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Abstract

A method is created to extend a bistatic 3D electromagnetic scattering solution for

a dihedral at a given orientation and position to the case of arbitrary orientation and

position. Results produced using this method are compared to shooting and bouncing

rays (SBR) and method of moments (MoM) predictions, as well as measured data for

applicable cases. The model in this thesis shows excellent agreement in magnitude

and phase with SBR predictions. It also shows good agreement in magnitude with

MoM predictions. Small phase differences between model and MoM data occur due

to differences in the underlying scattering solution and the more exact MoM predic-

tion. The model accurately predicts bistatic scattering from a dihedral at arbitrary

orientation and position and is computationally more efficient than SBR and MoM

methods.
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BISTATIC 3D ELECTROMAGNETIC

SCATTERING FROM A RIGHT-ANGLE

DIHEDRAL AT ARBITRARY

ORIENTATION AND POSITION

I. Introduction

1.1 Problem Description

Monostatic electromagnetic scattering from the basic dihedral shape has been

comprehensively studied and is a well understood phenomenon. However, bistatic

scattering has not been researched as extensively. Bistatic radar in general is again

receiving interest in the radar and signal processing research community, due to its

applicability to unmanned aerial vehicle (UAV) swarms and the inherent geomet-

ric information advantage over monostatic radar for Automatic Target Recognition

(ATR) problems. The dihedral shape is commonly found in real world scenes of in-

terest. Building-to-ground, car-to-ground, tree trunks-to-ground, etc. are examples

of real-world dihedral features that, if correctly identified by long-range Synthetic

Aperture Radar (SAR), would provide valuable information to the warfighter.

Electromagnetic scattering prediction codes based on Shooting and Bouncing Rays

(SBR) or Method of Moments (MoM) can be used to obtain accurate bistatic scatter-

ing solutions for a right-angle dihedral placed at arbitrary position and orientation.

However, these prediction codes are neither computationally efficient nor quickly mod-

ifiable to the parameters of the dihedral target. A parameterized, closed-form equa-

tion model based on high-frequency analysis techniques for a dihedral at arbitrary

1



orientation and position would greatly increase the computational efficiency (tenths

of seconds versus hours) of finding the scene scattering behavior using a personal

computer (PC). Further, the efficiency advantage is increased when considering time

saved in modifying the surface mesh or facet information required for SBR or MoM

predictions to account for arbitrary size, orientation, and position of the dihedral

target.

1.2 Research Goals and Methodology

There are two main goals of this research effort. First, this research effort will

create a method to extend the closed-form bistatic 3D dihedral scattering solution

developed in [12] to account for arbitrary orientation and position. Second, it will

validate the results produced by this method. An example of arbitrary dihedral

orientations and positions as well as the orientation for the closed-form solution in

[12] is shown in Figure 1.1. The result of successfully accomplishing these goals will be

a validated, computationally efficient model to compute bistatic 3D scattering from

a dihedral at arbitrary orientation and position.

(a) (b) (c) (d)

Figure 1.1. Examples of dihedral targets at arbitrary orientation and position. The
model in this thesis is designed to calculate bistatic 3D scattering for a dihedral at
arbitrary orientation and position (examples: a-c) by extending a closed-form bistatic
3D scattering solution for a dihedral orientated as shown in (d) developed in [12].
Prime notation in (d) indicates local target coordinates. Unprimed notation in (a)-(c)
indicates global coordinates.

To this end, the bistatic 3D Physical Optics (PO) scattering solution is first found
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for a simple plate. A plate is used because it is a subset shape comprising a dihedral

and to simplify the scattering behavior for examining the effects of changes to orienta-

tion and position. A method is then developed to extend this solution to account for

any combination of orientation, position and receive/transmit antenna aspect angles.

This method is then applied to a Geometric Optics (GO) and PO hybrid closed-form

scattering solution for a right-angle dihedral developed in [12]. Validation against

SBR and MoM solutions is performed for both the simple plate and dihedral models.

Further validation is accomplished by investigating model performance for dihedral

orientations commonly used for calibration purposes as well as comparing to mea-

sured data. In this effort, orientation refers to the target’s roll/pitch/yaw from a

defined beginning orientation, while position refers to distance from the scene origin.

1.3 Potential Applications

The model developed in this thesis has two primary potential applications. First,

it can be used in future bistatic ATR efforts where scattering waveform accuracy

and timeliness is required. Because the model developed in this thesis produces

waveforms which are a function of target size, orientation, and position (among other

dependencies), there exists the potential to estimate these parameters in a real-world

scene. The accurate scattering model developed in this thesis could be used to aide

identification of a target dihedral’s size, orientation, and position.

Second, the model developed in this thesis can potentially be used to provide

timely calibration for airborne bistatic SAR systems. Dihedral calibration targets are

commonly used for monostatic systems because of their high magnitude returns as

well as polarization effects. Some current monostatic airborne SAR systems perform

calibration based on the dihedral hip-pocket radar cross section (RCS) formula and

scattering matrix [4]. The model developed in this thesis is more accurate in mag-
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nitude and phase, is capable of accounting for any dihedral orientation and position,

and is applicable to any bistatic transmitter/receiver (TX/RX) aspect angles within

the interior corner of the dihedral.

1.4 Organization of Thesis

This thesis is organized into five chapters and two appendices. Chapter II provides

theoretical background information related to the concepts investigated through this

research effort as well as a review of similar efforts in the radar and signal processing

communities. Chapter III describes the derivation of the PO soluton for a simple

plate with arbitrary orientation and position, and applies a similar approach to a

dihedral target shape. Chapter IV includes results comparing data generated by the

closed-form equations developed in this thesis to SBR and MoM based simulations

as well as measured data. Chapter V contains the conclusion. Finally, data from

the validation section not presented in Chapter IV is shown in Appendix A while

additional dihedral scattering equations are provided in Appendix B.
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II. Background

2.1 Chapter Overview

There are two purposes of this chapter. Current research into bistatic dihedral

scattering is provided. Also, important concepts are explained which will aide the

reader in understanding both the derivation and validation of the bistatic 3D dihedral

scattering model for arbitrary orientation and position developed in this thesis.

The research section of this chapter will first summarize both monostatic and

bistatic research efforts. It begins by explaining in-plane monostatic dihedral scat-

tering and why dihedrals are useful calibration targets. It builds to summarizing

development of a parametric bistatic 3D model for dihedral scattering based on 2D

scattering center responses. This parametric bistatic 3D model is referred to as ‘para-

metric model’ throughout this thesis. The Geometric Optics-Physical Optics (GO-

PO) based model in this thesis is shown in Chapter IV to be a more accurate descriptor

of scattering for a dihedral at arbitrary orientation and position when compared to

this parametric model.

In addition to research summaries, important concepts are provided to help the

reader understand the derivation and validation in this thesis. First, basic RCS and

scattering regime information is provided. The PO approximation is also explained.

Third, scattering prediction methods based on SBR and MoM are summarized. Fi-

nally, experimental setup and calibration information for measurements taken in the

AFIT RCS range are provided.

This chapter is organized into two sections. Section 2.2 contains information on

previous research into electromagnetic scattering for a dihedral. Section 2.3 provides

information on electromagnetic scattering concepts, prediction methods, and RCS

measurement information.
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2.2 Previous Research

This section summarizes previous research into dihedral scattering behavior and

3D scattering models.

2.2.1 Dihedral Scattering.

This section will describe previous monostatic and bistatic dihedral scattering re-

search efforts. Monostatic scattering from a dihedral is a well-researched target class

due to its usefulness as an RCS calibration object. There are many papers which con-

sider monostatic, in-plane dihedral scattering. In [18], Michaeli uses Physical Theory

of Diffraction (PTD) for analysis. In [8, 9], Griesser and Balanis use two methods, PO

combined with PTD and PO combined with Uniform Theory of Diffraction (UTD)

[8, 9] to analyze monostatic, in-plane dihedral scattering. These models are accurate

but are not extended to out-of-plane RX/TX angles, where RX refers to the receiver

and TX refers to the transmitter.

The in-plane monostatic RCS pattern of a right-angle dihedral corner reflector

for aspect angle shown in Figure 2.1a is given in Figure 2.1b. Figure 2.1b shows

the characteristic broad center pattern which is dominated by the double-bounce

mechanism shown in Figure 2.1a. The two peaks at±45◦ are the peak specular returns

from the single bounce off the two simple plates. The slight sinusoidal behavior in the

central part of the pattern (−30◦ to 30◦) is produced by the sidelobes of this single

bounce return. The width and intensity of the RCS pattern is one of the main reasons

why dihedrals are well suited as calibration devices [20, 7].

In [16], Knott gives the hip-pocket RCS formula for a dihedral as σ = 8π(ab)2

λ2

where a and b are the length and width of one of the two plates of the dihedral.

This formula requires equally sized plates which compose the dihedral. In [4], Blejer

calibrates an airborne monostatic SAR system by comparing measured peak response
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(a) (b)

Figure 2.1. Monostatic in-plane RCS pattern for dihedral. (a) For monostatic in-plane
scattering, rays entering a right-angle dihedral are reflected back in the direction from
which they came. (b) Monostatic RCS pattern of a right-angle dihedral with square
faces 0.5m along a side measured at 10 GHz.

from a dihedral to this hip-pocket RCS formula.

In [8], Griesser and Balanis investigate monostatic dihedral returns for various

corner angles using both the GO-PO technique developed by Knott [14] and a more

rigorous solution using numerical integration to find the PO near-field integral for

the interior reflection. They find that the GO-PO technique compares well with ex-

perimental measurements for right angle (90◦) and wider (> 90◦) dihedral corner

reflectors but offers the least accuracy for acute (77◦) dihedral corner reflectors. The

PO near-field integral technique increases accuracy for acute dihedrals but offers little

accuracy increase for right angle and obtuse dihedrals at the cost of significant compu-

tational complexity. Their findings provide motivation to use the GO-PO technique

to study the right-angle dihedral in this thesis.

In [24], Wang and Jeng apply arbitrary orientation to a PO dihedral RCS solution,

but their solution is only for the monostatic case and does not give the complex

scattering solution needed for SAR.

In [13], Jackson predicts bistatic 3D scattering response using 2D scattering cen-
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ter models extended to 3D. These models are examined in the next section. In [12],

Jackson derives a more accurate model for bistatic dihedral scattering for fixed posi-

tion and orientation using a hybrid GO-PO approach. This approach is extended in

Section 3.3 to account for arbitrary orientation and position of the dihedral.

2.2.2 Previous 3D Models for Bistatic ATR.

This section will summarize the relevant parts of [13], which develops bistatic 3D

parametric models based on 2D scattering center responses. These 3D parametric

models are intended to model the dominant forward scatter while remaining less

computationally complex than exact scattering solutions. In Chapter IV, data created

using these models is referred to as ‘PM’ and is used as an additional comparison

waveform when examining measured dihedral scattering data collected in the AFIT

RCS range.

The three-dimensional shape responses in [13] are developed as products of the

two-dimensional response. For example, when considering a three-dimensional right-

angle dihedral with its seam aligned with the y-axis, one notices it is a combination of a

two-dimensional right-angle in elevation and a flat plate scatterer in azimuth. Using

Geometric Theory of Diffraction (GTD) to model the far-field, the high-frequency

bistatic shape response of the 2D right angle of sufficient size (H >> λ) is given as

[13]:

Mright(k, ψt, ψr;H, ψ̃) =
( jk√

π

)1/2

2H sinc[kH(cos (ψt − ψ̃)− cos (ψt − ψ̃))]

×


sin ψt+ψr−2ψ̃

2
, ψt, ψr ∈ [ψ̃, ψ̃ + π

4
]

cos ψt+ψr−2ψ̃
2

, ψt, ψr ∈ [ψ̃ + π
4
, ψ̃ + π

2
]

(2.1)

where k = 2πf/c is the wavenumber, H is the length of the sides, ψ̃ is the orientation
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(a) (b) (c)

Figure 2.2. Geometry for 2D scattering center models and 3D dihedral parametric
model, (a) 2D flat plate, (b) 2D right-angle, (c) 3D dihedral. The 2D scattering center
response for flat plate (a) and right-angle (b) targets serve as the basis for the 3D
dihedral model developed in [13]. Source for (a),(b) is [11].

angle of the 2D dihedral measured counterclockwise from the positive horizontal axis,

and ψt and ψr are the transmit and receive angles respectively. See Figure 2.2b.

Similarly, the two-dimensional flat plate has bistatic scattering response given by

Mflat(k, ψt, ψr;L, ψ̃) =
( jk√

π

)1/2

L sinc[k
L

2
(sin (ψt − ψ̃) + sin (ψr − ψ̃))],

ψt, ψr ∈ [ψ̃ − π

2
, ψ̃ +

π

2
] (2.2)

where L is length and ψ̃ is orientation angle.

Next, the three-dimensional dihedral response can be formed by multiplying the

two-dimensional right angle and flat plate responses. This is because the three-

dimensional dihedral functions as a right angle in elevation and a flat scatterer in
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azimuth.

Mdih = Mflat(k, φt, φr;L, φ̃ = 0)Mright(k, ϑt, ϑr;H, ψ̃ = 0)

=
jk√
π

2LH sinc[k
L

2
(sinφt cosϑt + sinψr cosϑr)] sinc[kH(cosϑt − cosϑr)]

×


sin ϑt+ϑr

2
, ϑt, ϑr ∈ [0, π

4
]

cos ϑt+ϑr
2

, ϑt, ϑr ∈ [π
4
, π

2
]

, φt, φr ∈ [
−π
2
,
π

2
] (2.3)

where L is the length of the three-dimensional dihedral, H is equal to the width

of each of the plates which make up the dihedral, and ϑ is the elevation angle of

the transmitter or receiver. Note that this thesis uses θ to indicate the traditional

spherical angle from the z-axis down to the vector while ϑ is used here to indicate

elevation angle from the xy-plane up to the vector (ϑ = π/2− θ).

Finally, the shape response Mdih is multiplied with the polarization response and

an exponential propagation factor to represent the complete returned signal S. This

returned signal is dependent only on wave number k, transmitter and receiver angles,

and the location, orientation, and size of the target.

It follows that other three-dimensional shapes can be modeled by the same method

using different combinations of flat, right-angle, and circular planar responses. In [13],

the author defines the three-dimensional response for rectangular plate, dihedral,

square trihedral, cylinder, top-hat, and sphere shapes. Because these models are

based on the geometric shape of the target, the model parameters are related to the

geometry of the target, providing a basis for the feature estimation problem central

to ATR.

The term feature estimation encompasses accurate identification of the feature

type (e.g. dihedral vs. sphere) as well as accurate estimation of the true feature

size, orientation, and position [13]. An accurate polarimetric scattering model for
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canonical shapes such as the dihedral is central to correctly estimating the physical

parameters in a scene. In [13], the parametric models described in this section are

compared to SBR scattering predictions and are deemed an acceptable descriptor of

the bistatic forward scattering from an object. However, these parametric models are

not electromagnetically exact, show differences when compared to SBR predictions,

and do not closely match MoM predictions. It will be shown in Chapter IV that

the model developed in this thesis produces nearly identical magnitude and phase

information when compared to SBR predictions, is very similar to MoM predictions,

and is more accurate than the parametric model described in this section for a dihedral

at arbitrary orientation and position.

2.3 Important Concepts

The information in this section will help the reader understand the tools and

techniques used to derive the model central to this thesis as well as understand the

various prediction methods used to validate it. First, basic RCS and scattering regime

information is given. This is followed by an explanation of the theory behind the PO

approximation. Third, scattering prediction methods based on SBR and MoM are

summarized. Finally, experimental setup and calibration information for measure-

ments taken in the AFIT RCS range are provided.

2.3.1 Radar Cross Section.

Radar cross section (RCS) is a measure of power scattered in a given direction

when a target is illuminated by an incident electromagnetic wave [16]. The formal

definition of RCS is the power density scattered in the direction of the receiver divided

by the power per unit area (power density) incident at the target [17]. In terms of
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the incident and scattered electric field intensities, the RCS is defined as [16]

σ
4
= lim

R→∞
4πR2

∣∣∣ ~Es∣∣∣2∣∣∣ ~Ei∣∣∣2 (2.4)

where R is range to the target, and ~Es and ~Ei are the scattered and incident electric

fields respectively. Because the wave’s power per unit area at the receiving antenna

decreases as 1/ (4πR2) with distance, the factor 4πR2 in Equation (2.4) ensures the

RCS is a function of aspect angles but not distance [19]. The limit is used in Equation

(2.4) to ensure that the receiver is in the far field, i.e. that the received wave is planar.

Because the RCS is a real number formed by squaring the amplitude of a complex

number representing the scattered electric field, all phase information is lost. It is

useful, especially for ATR and SAR applications, to keep the phase information.

Therefore, the root of σ is implicitly used when dealing with complex scattering

values, using the equation [16]:

√
σ
4
= lim

R→∞
2
√
πR

~Es
~Ei
. (2.5)

When providing RCS magnitude, units are most commonly given in decibels rel-

ative to area (dBsm):

σ[dBsm] = 10 log σ = 20 log
∣∣√σ∣∣ (2.6)

The scattered electric field, and therefore RCS, is a function of many factors;

target size, orientation, shape and material, radar frequency, and transmit and re-

ceive aspect angles and polarization. In general, bistatic RCS for a target is given

as σpolt,polr(θt, φt, θr, φr) where polt and polr indicate the transmit and receive po-

larizations respectively and θ, φ are the spherical angles representing the transmit
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(subscript t) and receive (subscript r) locations in the far field.

2.3.2 Scattering Regimes.

There are three regimes which characterize scattering behavior. They are de-

pendent on the ratio between wavelength, λ and target length, L. The impacts of

different scattering behavior in each region are important to consider when creating

an RCS test plan and analyzing the results. The regimes shown in Figure 2.3 are

the Rayleigh region, the Resonant region, and the Optics region, which correspond

roughly to L << λ, λ ≤ L ≤ 10λ, and L >> λ, respectively.

In the Rayleigh region, there is little phase variation of the incident wave over the

surface of the scattering body and only the target size is important, not its individual

features. In the Resonant region, there is significant phase variation over the length

of the scattering body and surface and creeping waves significantly influence the

scattered field. In this region, exact solutions of Maxwell’s equations are required.

Finally, in the Optical region, wavelength is much smaller than scattering body size,

and the scattering response from a target can be considered as the summation of

the returns from independent scattering centers. In this region, detailed geometry

becomes important in the scattering process, and high-frequency techniques such as

the PO approximation and Geometric Theory of Diffraction are accurate [16, 3, 20].

For this reason, the size of targets used for validation in Chapter IV have minimum

dimensions of 0.25 meters for X-band (λ ≈ 0.03meters). Further, the Geometric

Optics (GO) - PO hybrid method to predict dihedral scattering derived in [12] and

used in this thesis is not validated below the Optical region.
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Figure 2.3. RCS scattering regions. The three regions are typically shown with respect
to the RCS of a sphere, where r is the radius. In the Rayleigh region, RCS increases
with frequency to the fourth power and specific target characteristics other than total
area are trivial. In the Resonant region, second order effects such as travelling and
creeping waves are the dominant scattering mechanism. In the Optical region, specular
scattering is the dominant mechanism.

2.3.3 Physical Optics.

The PO approximation is a high frequency electromagnetics technique in which

GO fields are utilized to compute currents for the radiation integrals that are encoun-

tered in scattering applications [6]. It is an approximate, not electromagnetically

exact solution involving two assumptions to obtain the surface current [3]. First, the

radii of curvature of the surface is large compared to wavelength (i.e. the surface is

locally planar). Second, currents exist only in the area that is directly illuminated by

the incident wave and currents on the illuminated surface have the same characteris-

tics as of those on an infinite plane tangent to the surface at the point of incidence

(i.e. 2nd order effects such as traveling and creeping waves are not accounted for).

For a perfect electrical conductor (PEC) target, the surface current is ~Js = n̂× ~H

where H = ~Hs + ~Hi and n̂ is the surface normal, × indicates the cross-product

operator, ~H is the total magnetic field, ~Hs is the scattered magnetic field, and ~Hi is

the incident magnetic field. Therefore, in an equivalent problem without the target,
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Figure 2.4. Physical Optics approximation. The PO approximation will exhibit non-
physical behavior in the shadow region.

the scattered field will be maintained by the approximate equivalent electric surface

current density:

~Jeq
s ≈ ~JPO =


2n̂× ~H i lit region

0 shadow region.

(2.7)

Once the PO surface current density is found, one may use far-zone radiation integrals

to compute the scattered field to find the RCS.

Although the PO approximation models well the currents on the illuminated por-

tion of the target, there is a sudden jump between nonzero and zero current at the

shadow boundary, see Figure 2.4. This non-physical behavior indicates that the PO

approximation produces inaccurate scattering behavior near and within the shadow

region. However, it is highly accurate near the mainlobe response [1, 16, 3, 6]. For this

reason, the PO-based model central to this thesis shows promise for bistatic ATR and

airborne SAR calibration, which both emphasize forward scatter mainlobe accuracy

over sidelobe accuracy.

Furthermore, the closed-form GO-PO solution developed in this thesis is many

orders of magnitude less computationally intensive than other prediction methods

based on Shooting and Bouncing Ray (SBR) methods or Method of Moments (MoM)

solutions. This advantage is increased for larger target size relative to wavelength.

Additionally, a closed form solution does not require a surface mesh or other type of
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geometry file to be created prior to simulation. These points will be expanded upon

in the next section.

2.3.4 Other Methods.

This section will present information on other electromagnetic scattering predic-

tion tools which are used in this thesis effort to create simulated reference data.

The SBR and MoM electromagnetic scattering methods are presented followed by a

discussion of geometry meshes.

2.3.4.1 Shooting and Bouncing Rays.

The SBR technique combines GO and PO theory to numerically predict the scat-

tered EM field. A collection of parallel rays in the transmit direction are traced as

they reflect off the target. The field for each ray is computing using GO, and PO is

used to find the induced surface current and field contribution from the last reflec-

tion point on the target [2]. The field contributions from each ray are summed in

the far-field to find the total scattered field. SBR is more computationally efficient

than MoM and other electromagnetic analysis techniques based on solutions to the

differential or integral forms of Maxwell’s equations; the main computational burden

of SBR lies in the ray tracing. The SBR technique is used in this thesis as a first-

order accuracy benchmark for comparison which does not account for traveling wave

or other second order effects. The closed-form GO-PO model used in this thesis is

very similar to the SBR method in that both techniques are PO based and use GO to

calculate the incident propagation vector for the double bounce scattering between

the two dihedral plates.
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2.3.4.2 Method of Moments.

The MoM is a numerical technique to solve for target surface current ~Js and

the associated scattered (reradiated) fields. The surface current is induced on the

target by the transmitted electromagnetic field. Using electromagnetic boundary

conditions and assuming linear, homogeneous and isotropic media, one may define

electric and magnetic field integral equations to relate the incident field to a surface

integral containing ~Js [1]. The MoM technique discretizes the integral equations over

a target surface mesh and solves the resulting system of equations to obtain the

surface current. Then the associated scattered field is computed. In general, MoM

is highly accurate when the mesh size is adequately small (≈ λ
10

) and is excellent

at predicting scattering from planar perfect electrical conductor (PEC) targets such

as a metallic dihedral [3]. However, MoM techniques have significant computational

time and storage requirements. MoM computations can be accelerated by applying

fast multipole method (FMM) and multilevel fast multipole algorithm (MLFMA),

which are techniques for exploiting symmetry or periodicity in structures [5, 21, 22].

However, these techniques still require computation time on the order of hours rather

than minutes (SBR) or seconds (closed-form GO-PO model) using a PC for the cases

examined in this thesis.

2.3.4.3 Geometry Mesh.

The above electromagnetic prediction techniques both depend on some type of

target surface geometry information. This geometry information is typically con-

tained in a target surface mesh. The mesh file requires computational resources to

create and subdivides the target surface into triangular facets where each triangle

side is adjacent to another triangle side so that each node is shared between multiple

triangles. The mesh can also be subdivided into other geometric representations such
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as quadrilaterals or bicycle splines. Creating this target surface geometry informa-

tion and modifying it for arbitrary orientation and position is an additional step of

computational resources that is not required when using the closed form solution de-

veloped in this thesis. Further, increasing the target dimensions directly increases the

number of mesh nodes, which increases the number of unknowns in a MoM solution

and directly increases the computation requirements. This relation between target

dimensions and computation time is also avoided by using the closed-form solution

in this thesis.

2.3.5 AFIT RCS Range.

For various dihedral orientations used for validation in Chapter IV, AFIT RCS

range data is used as an additional comparison waveform for the method developed in

this thesis. This section describes the experimental setup for bistatic measurements

in the AFIT RCS range and also provides calibration information.

2.3.5.1 Experimental Setup.

The experimental setup in the AFIT bistatic indoor range facility is shown in

Figure 2.5. The dihedral target is located on a pedestal in the center of the range.

The transmit antenna position is fixed, and the receive antenna moves in a circle of

radius = 8′ around the target. The target pedestal is rotated to achieve a transmitter

azimuth aspect angle of φt. The receive azimuth φr varies as the bistatic arm moves.

The first orientation case measured experimentally is the dihedral at 90◦ roll

and 45◦ pitch, while the second measurement is of the dihedral at 90◦ roll and 20◦

pitch, relative to the original dihedral position defined in Figure 3.3. Roll, pitch,

and yaw are defined as right-hand rotation about the x, y, and z axes, respectively.

Figure 2.6 shows the dihedral mounted on the pylon at these orientations. These
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Figure 2.5. Bistatic AFIT RCS range experiment setup.

experiment orientations were chosen for two reasons. First, the orientations were

physically realizable using styrofoam mounts. Styrofoam is used because its relative

permeability and relative permittivity are nearly 1 at X-band frequencies, making

it essentially invisible to the radar. This is required to allow the target dihedral to

appear as if it is floating above the pylon. Second, the mainlobe forward scatter was

positioned very close to waterline (θ = 90◦). This is because the bistatic arm is fixed

in θ, and is unable to be positioned at off-waterline elevations, therefore dihedral

orientations which ’launch’ the peak bistatic response far from waterline will produce

weak sidelobe returns at the receiver and are not useful RCS data comparisons for

this thesis effort.

2.3.5.2 Calibration.

In order to collect an accurate bistatic RCS measurement, the data collected from

the AFIT RCS range needs to be calibrated. Four measurements are required to

collect accurate target data. Once the data has been collected, it can be calibrated
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(a) (b)

Figure 2.6. Dihedral targets for bistatic RCS measurements. (a) 90◦ roll and 45◦ pitch,
with bistatic receiver in background. (b) 90◦ roll and 20◦ pitch positioned on pedestal.
Orientations are relative to the original dihedral position defined in Figure 3.3.

by [16]:

σcalibrated =
σtar − σtarB
σcal − σcalB

× σthy (2.8)

where σcalibrated is calibrated RCS data, σtar is the target measurement, σtarB is the

target background measurement, σcal is the calibration target measurement, σcalB is

the calibration target background measurement, and σthy is the theoretical calibration

target RCS. The theoretical response is found using MoM software. A cylinder is

used as the calibration target due to relatively high RCS response and insensitivity

to misalignment errors.

In order to verify calibration quality, two calibration cylinders (375mm and 450mm)

were measured at φr = 45◦. The calibration comparison and difference plot over 7-15

GHz for the 450mm cylinder are shown in Figure 2.7. The specific dihedral measure-

ments shown in Chapter IV were taken at 10 GHz, for this frequency the magnitude

difference between the calibrated 450mm cylinder measurement and the theoretical

response is found to be -0.018 dB (HH-pol) and 0.318 dB (VV-pol). This error is

very small and indicates data calibrated using the 450mm cylinder measurement is

well calibrated.
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(a) (b)

Figure 2.7. Calibration error for bistatic RCS measurements. (a) Calibration com-
parison and (b) calibration difference plots for the 450mm calibration cylinder bistatic
measurement.

2.3.5.3 Measured Data Uncertainty.

Uncertainty in measured data is an important consideration because data collected

in the AFIT RCS range is used in Section 4.4.2 as validation data. Three possible

sources of measurement uncertainty in the dihedral measurements are inexact target

orientation, surface inconsistencies, and transmitter antenna offset. Although great

care was taken while cutting the styrofoam mounts, the blocks most likely do not

tilt the dihedral at exactly 45◦ and 20◦. Also, the surface of the target dihedral is

likely marred by physical inconsistencies which could produce slightly different scat-

tering behavior than from a dihedral composed of ideally planar surfaces. Finally,

the horizontal and vertical transmitters in the AFIT RCS range are separated by

approximately one foot. This can be accounted for in the monostatic case by man-

ually shifting each polarization by a slightly different angular value. However, this

physical antenna offset in the bistatic case results in slightly different transmitter

aspect angles for each polarization because the target is centered to a point between

the two antennas, not to each antenna individually. In practice, this causes the VV-

polarization data to be slightly lower (≈ 0.5dB) in magnitude than expected because
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the transmit antenna is positioned at a slightly larger angle than intended. Likewise,

the HH-polarization measurements are generally higher than predictions because the

antenna is positioned at a slightly smaller transmit angle than desired. These sources

of measurement uncertainty are probable causes of the differences in scattering be-

havior observed in Section 4.4.2 between the measured data and computer based

prediction methods.

2.4 Chapter Summary

This chapter has examined past research into dihedral scattering and 3D bistatic

scattering models. It also summarized key concepts including RCS, scattering regimes,

PO approximation, SBR and MoM prediction methods, and the AFIT RCS range. At

this point, the reader is prepared to understand both the model derivation in Chapter

III and validation in Chapter IV.
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III. Scattering for Arbitrary Orientation and Position

3.1 Chapter Overview

The purpose of this chapter is to explain the bistatic 3D PO scattering solutions

for both the simple plate and dihedral target types as well as a method to extend

these solutions to arbitrary target orientation and position. The simple plate PO

derivation is for a fixed orientation centered in the XY plane and follows the methods

described in Section 2.3.3. The dihedral GO-PO solution was first computed in [12]

and is for a fixed orientation with the dihedral seam aligned with the z axis. That

derivation is summarized below. Then a method is presented to extend these solutions

to the case of a flat plate or dihedral target at arbitrary orientation and position. The

resulting closed form solutions produce an accurate representation of the scattering

for these targets in significantly less time than predictive software based on SBR

or MoM solutions. The simple plate is analyzed prior to the dihedral in order to

gain familiarity with PO analysis for the bistatic 3D case as well as to reduce the

complexity of the scattering behavior when observing the effects of arbitrary target

orientation.

This chapter is organized as follows. Section 3.2 derives the bistatic 3D PO scat-

tering solution for a simple plate in the XY plane. Section 3.3 summarizes the bistatic

3D scattering solution for the dihedral calculated in [12]. Finally, Section 3.4 presents

a method to extend these solutions to arbitrary target orientation and position.

3.2 Bistatic 3D PO Solution for Simple Plate

This section will present the bistatic 3D PO scattering solution derivation for a

simple plate centered in the XY plane. A plate is examined prior to the dihedral for

the author and reader to become familiar with bistatic 3D PO analysis, to simplify the
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scattering behavior when observing the effects of arbitrary target orientation, as well

as to have greater confidence for validation of the arbitrary orientation and position

transforms. The term ‘simple’ is used to indicate that the plate has no depth along

the z axis.

This section contains two parts. Section 3.2.1 presents the simple plate geome-

try as well as coordinate system transform formulas. Section 3.2.2 contains the full

derivation for the simple plate centered in the XY plane.

3.2.1 Plate Geometry.

The geometry for a simple plate centered in the XY plane with an arbitrary

incident field is shown in Figure 3.1. This is referred to as the ‘original’ orientation

when discussing orientation changes for the flat plate in Appendix 1.1. The coordinate

axes, spherical angles, and incident field components are given a prime notation to

indicate they are aligned with the target’s coordinate system and to differentiate these

values from global axes, spherical angles and incident field components which will be

defined in Section 3.4. In this case, ẑ′ is the unit vector normal to the plate’s surface,

~k′ is the incident direction vector, and the vertical and horizontal components of the

incident electric field are represented by ~E ′θ and ~E ′φ respectively. Finally, W indicates

size of the plate in meters along the y′-axis and d indicates size of the plate along the

x′-axis.

Prior to explaining the detailed derivation in the following section, it is useful to

define the conversion formulas necessary to switch between Cartesian and spherical

components. This begins with defining Cartesian and spherical vector representation

in Equation (3.1). Converting between these forms is accomplished using Equation

(3.2) to convert from Cartesian vector components to spherical vector components

while Equation (3.3) is used to convert spherical vector components to Cartesian
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Figure 3.1. Geometry for simple plate centered in XY plane. Prime notation is used
to indicate target coordinate system.

components [1].

~A = x̂Ax + ŷAy + ẑAz Cartesian

= r̂Ar + θ̂Aθ + φ̂Aφ Spherical

(3.1)


Ar

Aθ

Aφ

 =


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0



Ax

Ay

Az

 (3.2)


Ax

Ay

Az

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0



Ar

Aθ

Aφ

 (3.3)
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These transforms are used in the following PO derivation as well as the method to

account for arbitrary orientation.

3.2.2 Plate Derivation.

The scattered electric field for an arbitrary field incident upon the PEC plate

defined in Section 3.2.1 is derived as follows. This development follows the PO analysis

method presented in [6]. The transmit direction unit vector (k̂′t) and receive unit

vector (r̂′) for the bistatic configuration are shown in Figure 3.2. The unit vectors

and the target surface vector (~r′′) are written in Cartesian coordinates as

k̂′t = −(x̂′ sin θ′t cosφ′t + ŷ′ sin θ′t sinφ′t + ẑ′ cos θ′t) (3.4)

r̂′ = x̂′ sin θ′r cosφ′r + ŷ′ sin θ′r sinφ′r + ẑ′ cos θ′r (3.5)

~r′′ = x̂′x′′ + ŷ′y′′, (3.6)

where double-prime notation is used to indicate a vector on the surface of the plate.

Using the far-field assumption [1], the transmit electric field has components or-

thogonal to k̂t
′

and is expressed in spherical coordinates as:

~E ′t = ~E ′o,te
−j~k′t·~r′

= (E ′θθ̂t
′
+ E ′φφ̂t

′
)ejk(x′ sin θ′t cosφ′t+y

′ sin θ′t sinφ′t+z
′ cos θ′t). (3.7)

The transmit magnetic field is therefore:

~H ′t(~r
′) =

k̂′t × ~E ′t
η

=
−1

η
(E ′θφ̂t

′
− E ′φθ̂t

′
)ejk(x′ sin θ′t cosφ′t+y

′ sin θ′t sinφ′t+z
′ cos θ′t). (3.8)

The surface current density induced on the illuminated side of the flat plate is
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Figure 3.2. Spherical coordinate geometry for bistatic radar configuration. k̂′ is the
transmit unit vector while r̂′ is the receive unit vector. Prime notation is used to
indicate target coordinate system.

found by using the PO approximation described in Section 2.3.3. The surface current

density is found by:

~Js
′
(~r′′) ≈ 2n̂′ × ~H ′t(~r

′′)
∣∣∣
z′′=0

=
−2

η
ẑ′ × (E ′θφ̂t

′
− E ′φθ̂t

′
)ejk(x′′ sin θ′t cosφ′t+y

′′ sin θ′t sinφ′t)

=
2

η

(
E ′θ(x̂

′ cosφ′t + ŷ′ sinφ′t) + E ′φ(−x̂′ cos θ′t sinφ′t

+ ŷ′ cos θ′t cosφ′t)
)
ejk(x′′ sin θ′t cosφ′t+y

′′ sin θ′t sinφ′t) (3.9)

Now that the surface current is known, the scattered far-field components gener-
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ated by ~Js
′

are found by first solving for the far-field vector term ~N ′ [10].

~N ′ =

∫
S

~Js
′
(~r′′)ejkr̂

′·~r′′dS ′

=
2

η

(
E ′θ(x̂

′ cosφ′t + ŷ′ sinφt) + E ′φ(−x̂′ cos θ′t sinφ′t + ŷ′ cos θ′t cosφ′t)
)

∫ d/2

−d/2
ejx
′′k(sin θ′r cosφ′r+sin θ′t cosφ′t)dx′′

∫ W/2

−W/2
ejy
′′k(sin θ′r sinφ′r+sin θ′t sinφ′t)dy′′ (3.10)

The generic solution to integrals of this form is found by:
∫ β/2
−β/2 e

jζαdζ = 1
jα

(e
jβα
2 −

e
−jβα

2 ) =
j2 sin βα

2

jα
=

β sin βα
2

βα
2

= β sinc(βα
2

). Using this relationship, the integrated form

of ~N ′ is:

~N ′ =
2Wd

η
sinc

(
d

2
X
)

sinc

(
W

2
Y
)(

E ′θ(x̂
′ cosφ′t + ŷ′ sinφt)

+ E ′φ(−x̂′ cos θ′t sinφ′t + ŷ′ cos θ′t cosφ′t)
)

where X = k (sin θ′r cosφ′r + sin θ′t cosφ′t)

and Y = k (sin θ′r sinφ′r + sin θ′t sinφ′t) . (3.11)

The transverse of ~N ′ is designated ~N ′t and is found as:

~N ′t = θ̂′(θ̂′r · ~N ′) + φ̂′(φ̂′r · ~N ′)

=
2Wd

η
sinc

(
d

2
X
)

sinc

(
W

2
Y
)[

θ̂′
(
E ′θ(cos θ′r cosφ′r cosφ′t + cos θ′r sinφ′r sinφ′t)

+ E ′φ(− cos θ′r cosφ′r cos θ′t sinφ′t + cos θ′r sinφ′r cos θ′t cosφ′t)
)

+ φ̂′
(
E ′θ(− sinφ′r cosφ′t + cosφ′r sinφ′t) + E ′φ(sinφ′r cos θ′t sinφ′t

+ cosφ′r cos θ′t cosφ′t)
)]
. (3.12)

Finally, the scattered field is found, with the e−jkr

r
propagation term accounted
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for and suppressed, as:

~E ′s,xy =
−jkη ~N ′t

4π

=
−jkWd

2π
sinc

(
d

2
X
)

sinc

(
W

2
Y
)[

θ̂′
(
E ′θ(cos θ′r cosφ′r cosφ′t

+ cos θ′r sinφ′r sinφ′t) + E ′φ(− cos θ′r cosφ′r cos θ′t sinφ′t

+ cos θ′r sinφ′r cos θ′t cosφ′t)
)

+ φ̂′
(
E ′θ(− sinφ′r cosφ′t

+ cosφ′r sinφ′t) + E ′φ(sinφ′r cos θ′t sinφ′t

+ cosφ′r cos θ′t cosφ′t)
)]

for


θ′r < 90◦ if θ′t < 90◦,

θ′r > 90◦ if θ′t > 90◦,

0 otherwise. (3.13)

While Equation (3.13) is of the form useful for applying arbitrary orientation and

position changes to be described in Section 3.4, the derivation is typically taken one

step further by organizing into co/cross-pol scattering. In this form, V indicates ver-

tical polarization (θ-pol), H indicates horizontal polarization (φ-pol), and the first

subscript indicates receiver polarization while the second subscript indicates trans-

mitter polarization. The co/cross-pol PO solution for bistatic scattering from a simple
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plate is given as:

~E ′VV,xy =
−jkWd

2π
sinc

(
d

2
X
)

sinc

(
W

2
Y
)

(cos θ′r cosφ′r cosφ′t + cos θ′r sinφ′r sinφ′t)

(3.14a)

~E ′HV,xy =
−jkWd

2π
sinc

(
d

2
X
)

sinc

(
W

2
Y
)

(− sinφ′r cosφ′t + cosφ′r sinφ′t) (3.14b)

~E ′VH,xy =
−jkWd

2π
sinc

(
d

2
X
)

sinc

(
W

2
Y
)

(− cos θ′r cosφ′r cos θ′t sinφ′t

+ cos θ′r sinφ′r cos θ′t cosφ′t) (3.14c)

~E ′HH,xy =
−jkWd

2π
sinc

(
d

2
X
)

sinc

(
W

2
Y
)

(sinφ′r cos θ′t sinφ′t + cosφ′r cos θ′t cosφ′t)

(3.14d)

As shown in Equation (3.13), the PO bistatic 3D closed form solution for a simple

plate centered in the XY plane is a function of the size of the plate (W ,d), radar

frequency (k), transmit and receive angles (θ′t,φ
′
t,θ
′
r,φ
′
r), as well as the polarization

of the transmit signal, (E ′θ,E
′
φ). Figures which compare this closed form solution to

simulated data are provided in Appendix Section 1.1.1.

3.3 Bistatic 3D GO-PO Solution for Dihedral

This section will summarize the closed-form bistatic 3D GO-PO solution computed

in [12] for scattering from the interior of a dihedral at fixed orientation. Section 3.3.1

contains information on the dihedral orientation used for this derivation, while Section

3.3.2 summarizes the derivation.

3.3.1 Dihedral Geometry.

The fixed dihedral geometry for this analysis is shown in Figure 3.3. The dihedral

is centered vertically with its seam along the z′ axis and its two plates aligned with
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the x′ and y′ axes. This is referred to as the ‘original’ orientation when discussing

orientation changes in Section 3.4. In this case, x̂′ is the unit vector normal to the

YZ plate’s surface while ŷ′ is normal to the XZ plate’s surface. The bistatic TX/RX

geometry is the same as shown in Figure 3.2.

Figure 3.3. Dihedral geometry. L indicates height of the dihedral while a,b are the
width of each of the plates. Prime notation used to indicate target coordinate system.

3.3.2 Dihedral Derivation.

The dihedral scattering solution is separated into three terms: two first order

scattering terms from the vertically orientated plates in the YZ and XZ planes, and

a second order scattering term for the double bounce that reflects from one plate to

the other and then to the receiver. It is valid for aspect angles within the interior

of the dihedral (0◦ ≤ φ′t ≤ 90◦, 0◦ ≤ φ′r ≤ 90◦). The PO solutions for the first order

terms are derived in a similar manner as the solution for a simple plate centered in

the XY plane described in Section 3.2.2. The first order scattering from the plate in
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the XZ plane is [12]:

~E ′xz1 =
jkaL

2π
sinc

(
L

2
Z
)

sinc
(a

2
X
)
e
ja
2
X
(
θ̂′r
(
E ′θ sin θ′r sinφ′t

− E ′φ (cos θ′r cosφ′r sin θ′t − cos θ′t cosφ′t sin θ′r)
)

+ φ̂′rE
′
φ sin θ′t sinφ′r

)
where X = k (sin θ′r cosφ′r + sin θ′t cosφ′t)

and Z = k (cos θ′r + cos θ′t) (3.15)

and similarily the first-order scattering from the plate in the YZ plane is [12]:

~E ′yz1 =
−jkbL

2π
sinc

(
L

2
Z
)

sinc

(
b

2
Y
)
e
jb
2
Y
(
θ̂′r
(
E ′θ sin θ′r cosφ′t

− E ′φ (cos θ′t sinφ′t sin θ′r − cos θ′r sinφ′r sin θ′t)
)

+ φ̂′rE
′
φ sin θ′t cosφ′r

)
where Y = k (sin θ′r sinφ′r + sin θ′t sinφ′t) (3.16)

where prime indicates target domain coordinates.

There is one second order, double bounce scattering term for the dihedral. The

ray reflection from the first plate is traced to determine the angle of incidence on the

second plate, then the PO integral is found in a similar manner to Section 3.2.2, with

different limits of integration. The limits depend on the order in which the plates are

illuminated, the size of the two plates, and the transmit antenna’s aspect angle. The

PO scattered field for the double bounce mechanism is [12]:

~E ′2 =
−jk
2π

(
θ̂′r

(
E ′θ sin θ′r (Ixz sinφ′t + Iyz cosφ′t)

+ E ′φ
(
sin θ′t cos θ′r (Ixz cosφ′r − Iyz sinφ′r) + cos θ′t sin θ′r (Ixz cosφ′t − Iyz sinφ′t)

))
− φ̂′rE ′φ sin θ′t (Ixz sinφ′r + Iyz cosφ′r)

)
(3.17)

where Ixz and Iyz represent the integral term for the PO integral. Depending on
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the transmit aspect angle and the size of the plates which compose the dihedral,

the reflected field from one plate either partially or fully illuminates the other plate,

resulting in different limits for these integral terms. Using GO to trace ray reflections

there are six cases for illuminating the dihedral corner, with cases 1-3 corresponding

to 0◦ ≤ θ′t ≤ 90◦ and 4-6 to 90◦ ≤ θ′t ≤ 180◦. The closed form solutions to the PO

integrals for the six cases can be written as [12]:

I1,2,3
xz =

∫ X

0

∫ L
2
−x ′′ cot θ

′
t

cosφ′t

−L
2

e−j(x
′′X−z ′′Z)dz ′′dx ′′

=
ej

L
2
Z

jZ
X sinc

(X
2

(X + Z cot θ′t
cosφ′t

)
)
e
−j X

2
(X+Z cot θ′t

cosφ′t
) − e−j

L
2Z

jZ
X sinc

(X
2
X
)
e−j

X
2
X

(3.18)

I1,2,3
yz =

∫ Y

0

∫ L
2
−y ′′ cot θ

′
t

sinφ′t

−L
2

e−j(y
′′Y−z ′′Z)dz ′′dy ′′

=
ej

L
2
Z

jZ
Y sinc

(Y
2

(Y + Z cot θ′t
sinφ′t

)
)
e
−j Y

2
(Y+Z cot θ′t

sinφ′t
) − e−j

L
2Z

jZ
Y sinc

(Y
2
Y
)
e−j

Y
2
Y

(3.19)

I4,5,6
xz =

∫ X

0

∫ L
2

−L
2
−x ′′ cot θ

′
t

cosφ′t

e−j(x
′′X−z ′′Z)dz ′′dx ′′

=
ej

L
2
Z

jZ
X sinc

(X
2
X
)
e−j

X
2
X − e−j

L
2Z

jZ
X sinc

(X
2

(X + Z cot θ′t
cosφ′t

)
)
e
−j X

2
(X+Z cot θ′t

cosφ′t
)

(3.20)
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I4,5,6
yz =

∫ Y

0

∫ L
2

−L
2
−y ′′ cot θ

′
t

sinφ′t

e−j(y
′′Y−z ′′Z)dz ′′dy ′′

=
ej

L
2
Z

jZ
Y sinc

(Y
2
Y
)
e−j

Y
2
Y − e−j

L
2Z

jZ
Y sinc

(Y
2

(Y + Z cot θ′t
sinφ′t

)
)
e
−j Y

2
(Y+Z cot θ′t

sinφ′t
)

(3.21)

where superscripts 1,2,3 and 4,5,6 indicate illumination cases 1-3 and 4-6, respectively,

and double prime notation indicates target surface coordinates. Variables X ,Y , and

Z are defined in Equations (3.15) and (3.16), and the terms X and Y are the up-

per limits of integration on x ′ and y ′. The limits of integration are unique to each

illumination case and are given in [12]. Singularities when Z = 0 are avoided by im-

plementing L’Hopital’s rule to find the limiting equations in the numerical calculation

of Equations (3.18)-(3.21). These limiting equations are [12]:

lim
Z→0
Ixz =

(
LX∓ X2 cot θ′t

2 cosφ′t

)
sinc(

X

2
X )e−j

X
2
X ± X cot θ′t

jX cosφ′t

(
cos

X

2
X − sinc(

X

2
X )
)
e−j

X
2
X

(3.22)

lim
Z→0
Iyz =

(
LY∓ Y2 cot θ′t

2 sinφ′t

)
sinc(

Y

2
Y)e−j

Y
2
Y ± Y cot θ′t

jY sinφ′t

(
cos

Y

2
Y − sinc(

Y

2
Y)
)
e−j

Y
2
Y

(3.23)

where the upper sign applies for cases 1-3 and lower sign applies for cases 4-6. How-

ever, singularities also exist in Equations (3.22) and (3.23) when X = 0 and Y = 0,

respectively. In the case that both Z and either X or Y = 0, the limiting equations

are [12]:

lim
X→0

(
lim
Z→0
Ixz
)

= LX∓ X2 cot θ′t
2 cosφ′t

(3.24)

lim
Y→0

(
lim
Z→0
Iyz
)

= LY∓ Y2 cot θ′t
2 sinφ′t

(3.25)

Equations (3.17)-(3.25) define the double bounce term. The total scattered field
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for a dihedral is the sum of the two first order terms and the double bounce term:

~E ′total =


~E ′xz1 + ~E ′xy1 + ~E ′2 for 0◦ ≤ φ′t ≤ 90◦, 0◦ ≤ φ′r ≤ 90◦,

0 otherwise

(3.26)

where the φ′ aspect boundaries indicate the solution is valid for the interior of the

dihedral. As in the simple plate PO derivation, Equation (3.26) is of the form useful

for applying arbitrary orientation and position changes as described in the following

section. Typically, the solution is taken one step farther by separating the total

scattered field into co/cross-pol scattering equations. These equations are provided

in Appendix B due to the size of the equations.

At this point, the GO-PO solution derived in [12] for the total scattered field for a

dihedral at the orientation and position shown in Figure 3.3 is summarized. Results

and validation with comparisons to simulated data generated by SBR and MoM based

electromagnetic codes are provided in Chapter IV. The following section will derive

a method to extend this bistatic 3D GO-PO solution to arbitrary orientation and

position.

3.4 Extension to Arbitrary Orientation and Position

This section will explain a method to calculate the electromagnetic scattering

from an arbitrarily orientated and positioned plate or dihedral using the bistatic 3D

solutions for these objects defined in Sections 3.2.2 and 3.3, respectively. An example

using the plate is shown in Figure 3.4.

The order in which changes to orientation and position are applied is important.

Applying changes to position prior to orientation will result in a significantly different

target configuration than applying changes to orientation followed by position. The

following method employs the latter definition, i.e. apply arbitrary orientation then
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Figure 3.4. (a) Global coordinate system, (b) computation domain coordinate system.
The real-world target’s orientation is offset from the computation domain by some
rotation angle, in this case a roll angle of γ̃ = −90◦. Also, the position is offset from
the scene origin by Cartesian components Tx, Ty, Tz. The response from (a) can be
found using a closed-form PO solution based on (b). Prime notation is used to indicate
computation (target) domain coordinate system.

arbitrary position. The organization of this section follows this order: Section 3.4.1

will explain arbitrary orientation and Section 3.4.2 will explain arbitrary position.

This section closes with a flowchart summarizing this method in Section 3.4.3.

3.4.1 Orientation.

The high-level approach to account for arbitrary orientation is to first modify the

global TX/RX aspect angles and transmit electric field vector components into calcu-

lation (target) domain angles and vector components. Next, the calculation domain

scattering response is calculated using the plate or dihedral scattering equations in

Equations (3.13) and (3.26), respectively. Finally, the resulting calculation domain

scattered electric field vector components are modified into global scattered electric

field components. The details of this method are described in this section.

The first step when designing a method to account for arbitrary orientation is to

define the order of rotations. For example, applying 30◦ rotations in the order zyx
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(a) (b) (c)

Figure 3.5. (a) Roll, (b) pitch, (c) yaw right-handed rotations. Rotation about all three
axes is applied in the order roll, pitch, then yaw.

does not produce the same result as applying the same 30◦ rotations in the order xyz.

In this thesis, rotation is applied in the latter order, and the 3x3 rotation matrix as

a function of roll (γ̃), pitch (θ̃), and yaw (φ̃) rotations shown in Figure 3.5 is defined

as: R(φ̃, θ̃, γ̃) = Rz(φ̃)Ry(θ̃)Rx(γ̃) where Rz,Ry,Rx are the 3x3 rotation matrixes

corresponding to right-handed rotation about the subscripted axis and are defined as

R(φ̃, θ̃, γ̃) = Rz(φ̃)Ry(θ̃)Rx(γ̃)

=


cos φ̃ − sin φ̃ 0

sin φ̃ cos φ̃ 0

0 0 1




cos θ̃ 0 sin θ̃

0 1 0

− sin θ̃ 0 cos θ̃




1 0 0

0 cos γ̃ − sin γ̃

0 sin γ̃ cos γ̃

(3.27)

Multiplying a cartesian column vector or point in 3D space by the rotation matrix

R will rotate the vector or point about the origin, while multiplying by R−1 will rotate

the coordinate system about the origin. A useful method to check the validity of each

of the above 3x3 rotation matrices (R,Rx,Ry,Rz) is to use the rotation matrix

identity det(R) = 1, i.e. the rotation matrix is orthogonal and does not affect the

length of the vector rotated.

Using the above rotation matrix, the next step is to convert the real-world transmit

and receive angles (θt,φt,θr,φr) to computational domain coordinate system (θ′t,φ
′
t,θ
′
r,φ
′
r)
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angles. This is performed by first applying a spherical-to-Cartesian conversion. Then

the coordinate system is rotated by multiplying the Cartesian coordinates in 3x1 col-

umn form by the inverse rotation matrix R−1. Finally, the rotated vector is converted

back to spherical coordinates. The spherical-to-Cartesian conversions are performed

using Equation (3.28), while one may convert back to spherical values using Equation

(3.29): 
x

y

z

 =


sin θ cosφ

sin θ sinφ

cos θ

 (3.28)

θ = arccos
( z√

x2 + y2 + z2

)
and φ = arctan

(y
x

)
. (3.29)

This step of converting the real-world angles into calculation domain angles is sum-

marized in step 2 of the flow chart in Figure 3.7.

Now that the real-world TX/RX angles have been converted to calculation domain

angles, the TX electric field components must also be converted. This is performed

using the component conversions defined in Equations (3.2) and (3.3) by converting

the spherical components (Eθ,Eφ) to Cartesian components (Ex,Ey,Ez), applying

the inverse rotation matrix R−1, then converting these calculation domain Cartesian

components (E ′x,E
′
y,E

′
z) back to spherical components (E ′θ,E

′
φ) using the calculation

domain transmit angles (θ′t,φ
′
t). For real-world transmit electric field strength of

1 V/m, this conversion will result in some scaled value between ±1 V/m for E ′θ and

E ′φ which is dependent on the real-world transmit polarization and target orientation

and where
√
E ′θ

2 + E ′φ
2 = 1 V/m. This step is applied separately for real-world θ

and φ polarizations and is summarized in step 3 of Figure 3.7. An example of the

conversions for the TX/RX angles and electric field components for the scene shown

in Figure 3.4 is given in Figure 3.6.

The above calculation domain angles and TX electric field components are used
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(a) (b)

Figure 3.6. Electric field vector conversion. (a) Global coordinate system, (b) calcula-
tion domain coordinate system. For (θt, φt)=(90◦,30◦) and real-world target orientation
at roll=−90◦ from the original scattering solution, a vertical polarization component of
1 V/m in the global domain is converted to a local horizontal component of 1 V/m in
the calculation domain. Likewise, a global horizontal polarization component of 1 V/m
is converted to a vertical component of -1 V/m in the calculation domain.

to find the calculation domain scattered field ( ~E ′s) using the applicable closed-form

scattering solutions explained in Sections 3.2.2 and 3.3. The boundaries of the local

scattering solutions in Equations (3.13) and (3.26) are applied using the calculation

domain TX/RX angles. This is summarized in step 4 of Figure 3.7.

Finally, ~E ′s is converted back into real-world scattering by using Equation (3.3)

to convert the calculation domain θ′ and φ′ components to Cartesian components,

applying the rotation matrix R, then converting the resulting real-world Cartesian

components to spherical components using Equation (3.2). This is performed sepa-

rately for each real-world transmit polarization. The resulting spherical components

are the polarized scattering solutions for the real-world target orientated at arbitrary

roll, pitch, and yaw. This last step is summarized in step 5 of the flow chart in

Figure 3.7. Validation examples for the dihedral with changes to orientation only are

provided in Sections 4.4.2 and 4.5.
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3.4.2 Position.

This section will explain a method to account for arbitrary target position in 3D

space. Arbitrary position change from the scene origin produces an ejP phase term

where P is dependent on wavenumber k, the position offset from the scene center,

and a sinusoidal term which accounts for 3D transmit and receive aspect angles.

Multiplying the scattered field by these phase terms will accurately represent a target

at arbitrary position. The following will explain the derivation of the sinusoidal phase

terms.

Translation from the origin along the x and y axis can be derived by examining

the bistatic 3D plate solution. The phase terms along these axes are directly related

to the X and Y terms in Equation (3.11). This is because instead of the
∫ d/2
−d/2 dx

′

and
∫W/2
−W/2 dy

′ integral bounds in Equation (3.10), the bounds in the real-world scene

are actually
∫ Tx+d/2

Tx−d/2 dx′ and
∫ Ty+W/2

Ty−W/2 dy′, where Tx and Ty are translation distances

in meters along the x and y axes from the original target positions shown in Figures

3.1 and 3.3. The generic solution for integrals of this form is shown to be:

∫ A+β/2

A−β/2
ejζα dζ =

1

jα

(
ejα(A+β

2
) − ejα(A−β

2
)
)

=
1

jα

(
e
jαβ
2 − e

−jαβ
2

)
ejAα

=
j2 sin αβ

2

jα
ejAα

= β sinc(
αβ

2
)ejAα. (3.30)

Using this equality and Equation (3.11), the phase term is found to vary as

ejkTx(sin θr cosφr+sin θt cosφt) for translation along the x axis and ejkTy(sin θr sinφr+sin θt sinφt)

for translation along the y axis.

The proof for the phase term for z translation is slightly different. Instead of
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changing the surface integral bounds, the target surface vector in Equation (3.4) is

changed to ~r′′ = x̂′x′′ + ŷ′y′′ + ẑ′Tz where Tz is translation from the origin along

the z axis. This produces two changes to the PO derivation described in Section

3.2.2. First, the surface current density in Equation (3.9) is evaluated at z′′ = Tz, not

z′′ = 0, resulting in an additional ejkTz cos θ′t term for ~Js
′
(~r′′). Also, the dot product

r̂′ · ~r′′ in Equation (3.10) produces an additional ejkTz cos θ′r term in ~N ′. The result is

a phase term of ejkTz(cos θr+cos θt) for translation along the z axis.

The resulting phase terms to account for arbitrary position are:

x translation: ejkTx(sin θr cosφr+sin θt cosφt) (3.31a)

y translation: ejkTy(sin θr sinφr+sin θt sinφt) (3.31b)

z translation: ejkTz(cos θr+cos θt). (3.31c)

Multiplying the scattered field by these phase terms will produce an accurate predic-

tion of the real-world scattering behavior. This step is summarized in step 6 of the

flow chart in Figure 3.7. Example cases with position offsets from the scene origin

are examined for the dihedral and plate in Section 4.4 and Appendix Section 1.1.2,

respectively.

3.4.3 Flow Chart.

This section presents the complete method for accounting for arbitrary orientation

and position in flow chart form. This flow chart is given in Figure 3.7. A detailed

explanation of the steps is given in the preceding sections, 3.4.1 and 3.4.2.

The method summarized by the flow chart in Figure 3.7 is to first begin with

a scattering solution for the applicable target in a defined orientation and position.

Second, convert the real-world angles to computation domain angles. Third, convert
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the real-world electric field components to calculation domain components. Fourth,

find the calculation domain scattering. Fifth, convert the calculation domain scatter-

ing back into real-world scattering. The sixth and final step is to apply a phase shift

to account for offset from the defined target position. This method is designed to be

extendable to any scattering solution organized as a function of spherical transmit

polarizations (Eθ,Eφ).
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1. Define function for calculation domain scattering:

~E ′s(k,W, d, θ
′
t, φ
′
t, θ
′
r, φ
′
r, E

′
θ, E

′
φ)

2. Convert real-world angles to computation domain angles. For
real-world orientation offset from calculation domain by some γ̃,θ̃,φ̃:x′y′

z′

 = R−1(γ̃, θ̃, φ̃)

sin θ cosφ
sin θ sinφ

cos θ


and convert to spherical: θ′ = arccos

( z′√
x′2 + y′2 + z′2

)
, φ′ = arctan

(y′
x′

)
3. Convert real-world ~E field components to calculation domain components: 0

E ′θ
E ′φ

 =

sin θ′t cosφ′t sin θ′t sinφ′t cos θ′t
cos θ′t cosφ′t cos θ′t sinφ′t − sin θ′t
− sinφ′t cosφ′t 0

R−1(γ̃, θ̃, φ̃)

sin θt cosφt cos θt cosφt − sinφt
sin θt sinφt cos θt sinφt cosφt

cos θt − sin θt 0

 0
Eθ
Eφ



4. Calculate ~E ′s(k,W, d, θ
′
t, φ
′
t, θ
′
r, φ
′
r, E

′
θ, E

′
φ)

5. Convert calculation domain scattering ~E ′s to real-world scattering ~Es 0
Es,θ
Es,φ

 =

sin θr cosφr sin θr sinφr cos θr
cos θr cosφr cos θr sinφr − sin θr
− sinφr cosφr 0

R(γ̃, θ̃, φ̃)

sin θ′r cosφ′r cos θ′r cosφ′r − sinφ′r
sin θ′r sinφ′r cos θ′r sinφ′r cosφ′r

cos θ′r − sin θ′r 0

 0
E ′s,θ
E ′s,φ



6. Apply phase shift for off-origin target position:

~Efinal
s = ~Ese

jkTx(sin θr cosφr+sin θt cosφt)ejkTy(sin θr sinφr+sin θt sinφt)ejkTz(cos θr+cos θt)

Figure 3.7. Flow chart for computing scattering for arbitrary orientation and position.
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3.5 Chapter Summary

This chapter began by providing the bistatic 3D scattering solutions for both

the simple plate and dihedral target at defined orientations and positions. It then

explained a method to extend these solutions to arbitrary target orientation and

position. The resulting method is capable of generating accurate scattering data for

a dihedral or flat plate at any orientation or position within a scene in significantly

less time than predictive software based on SBR or MoM solutions. Data generated

using this method and comparisons to simulated data produced using SBR and MoM

based software as well as measurements in the AFIT RCS range are given in Chapter

IV and Appendix A.
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IV. Results

4.1 Chapter Overview

This chapter presents data obtained through simulations and experimental mea-

surements. Results comparing the model developed in this thesis against both SBR

and MoM predictions are given. Comparisons against measured data and the 3D

parametric model developed in [13] are also provided in some cases. Additional com-

parisons for flat plate targets can be found in the appendix.

This chapter is organized as follows. First, an overview of how scattering data is

displayed and how the prediction methods are compared quantitatively is presented

in Section 4.2. In order to become familiar with the performance of the closed-form

GO-PO solution for the dihedral which the model developed in this thesis is based on,

a dihedral at original orientation and position is examined in Section 4.3. Following

this, results showcasing the orientation and position transforms central to this thesis

are provided in Section 4.4. First, in Section 4.4.1, a case is presented where the

dihedral is positioned with changes to all six possible parameters - roll, pitch, yaw,

and translation along the x, y, and z axes. Model, SBR, and MoM predictions

are presented and compared for these cases. Second, in Section 4.4.2, two cases

are presented which contrast the model in this thesis with measured data collected

in the AFIT RCS range and the 3D parametric model developed in [13]. Finally,

in Section 4.5, model, SBR, and MoM data is presented and compared for dihedral

orientations commonly used for calibration purposes. Section 4.6 includes a summary

of computation times for the cases examined in this chapter.
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4.2 Data Presentation

This section discusses how scattering data and differences between model, SBR,

and MoM data is presented in this chapter. Because the model in this thesis is

intended to be accurate for 3D TX/RX angles (i.e. not restricted to waterline or con-

stant azimuth position), verification cannot be fully accomplished solely by traditional

RCS plots which typically present data for an azimuth sweep at constant elevation

or frequency sweep for constant TX/RX position. Data presented in this chapter is

given as the RCS magnitude for a (θr, φr) = (±20◦,±20◦) window centered around

the peak forward scatter response for a single transmitter aspect. Angular step-size

is 0.1◦ for both θr and φr. As a subset of this data, traditional magnitude and phase

plots are presented for an azimuth sweep with constant θr, where θr is chosen to

intersect the peak response in the scene. A single frequency is used (10GHz), and

the dihedral dimensions are L=0.5m (16.67λ), a=b=0.25m (8.33λ). The exception

to this is for the comparisons to measured data in Section 4.4.2, where the dihedral

dimensions are L=15.24cm (5.08λ), a=b=7.62cm (2.54λ).

The RCS dynamic range for the following figures is −20 to 30 dBsm. This scale

is used primarily to focus on the forward scatter mainlobe and first few sidelobes.

Both potential applications of the model developed in this thesis, bistatic SAR and

airborne SAR calibration, require accurate mainlobe modeling but are not dependent

on sidelobe accuracy [13]. Also, PO-based techniques are known to be inaccurate for

significantly off-specular angles [16]. For these reasons, values less than -20 dBsm are

not examined in this thesis.

In order to consider both magnitude and phase accuracy between model, SBR,

and MoM data, two types of comparison plots are presented. The first is termed

coherent difference and is given in dBsm. The second is named magnitude ratio and

is given in dB.
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Coherent difference is defined as 20 log10

∣∣√σ1 −
√
σ2

∣∣ where
√
σ1 and

√
σ2 contain

the magnitude and phase data for the prediction models being examined. It is indi-

cated in the following charts by “|Model-SBR|” or “|Model-MoM|” and is presented

on the same dBsm scale as the scattering data. A ‘good’ coherent difference value

is determined with respect to the scattering amplitude for the polarization being

examined and indicates that both the amplitude and phase are in agreement.

Magnitude ratio is defined as 20 log10

∣∣√σ1

∣∣ − 20 log
∣∣√σ2

∣∣. It is indicated in

the following charts by “|Model|/|SBR|” or “|Model|/|MoM|” and is presented for a

±20 dB range about 0 dB. For the magnitude ratio figures, the color white is at 0 dB

and indicates a perfect match in magnitude between the waveforms being examined.

For each target case examined, a figure is provided to help visualize the real-world

orientation, position, transmit angle, and receiver sweep. A table is also included

which quantitatively summarizes the scattering data and difference calculations at

the peak forward scatter position. Finally, polarimetric data is presented with one

polarization per page, in the order VV-HV-VH-HH.

4.3 Dihedral at Original Orientation and Position

The scene visualization for this case is shown in Figure 4.1. The polarimetric scat-

tering for a dihedral with no orientation or position change and transmitter position

(θt, φt) = (50◦, 60◦) is shown in Figures 4.2-4.5. The quantitative summary of scat-

tering at the peak forward scatter angle is given in Table 4.1. This case is examined

prior to the others in this chapter to provide the reader a baseline understanding of

how the GO-PO dihedral solution compares to SBR and MoM predictions without

adding the effects of changes to target orientation or position.

The following analysis focuses primarily on the dominant polarization for this

dihedral orientation, co-pol scattering. It then covers the cross-pols and finishes by
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(a) (b)

Figure 4.1. Geometry and TX/RX angles for scene with dihedral at original orientation
and position, (a) global coordinate system, (b) target coordinate system. Transmit
location is (θt, φt) = (50◦, 60◦) and (θ′t, φ

′
t) = (50◦, 60◦) in the target coordinate system.

Dihedral height is 0.5m, the sides are 0.25m. Prime notation used to indicate target
coordinate system.

presenting computation times for each prediction method.

As shown in Table 4.1 and Figures 4.2 and 4.5, the co-pol magnitude predicted by

the model in this thesis shows excellent agreement with SBR (< 0.33 dB difference)

and MoM predictions (< 0.35 dB difference) at the specular angle. For the entire

±20◦ × ±20◦ receiver range, the magnitude ratio between the model and SBR data

is near 0 dB, and the coherent difference is < −20 dBsm, indicating that the model

developed in this thesis shows excellent agreement with SBR predictions in both

magnitude and phase. This is expected as SBR calculates multiple-bounce rays using

geometric optics and performs the PO integral for the last surface contacted by the

ray, in a similar manner to the GO-PO solution developed in [12] which this thesis is

based on.

Examining the differences between MoM and both the GO-PO model and SBR

predictions, one observes the co-pol response matches well in magnitude at the peak

forward scatter (< 0.35 dB magnitude ratio). While the coherent difference is low
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Table 4.1. Scattering amplitudes and differences at specular angle for dihedral at
original orientation and position

Peak Magnitude (dBsm) VV HV VH HH
|Model| 18.47 -∞ -10.45 18.84
|SBR| 18.44 -∞ -9.95 18.80
|MoM| 18.79 -7.91 -7.94 18.98

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -28.51 -∞ -34.25 -29.24
|Model-MoM| -1.35 -7.91 -16.33 0.18
|SBR-MoM| -1.47 -7.91 -17.28 0.28

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.03 ∞ -0.49 0.03
|Model|/|MoM| -0.33 -∞ -2.5 -0.14
|SBR|/|MoM| -0.35 -∞ -2.01 -0.18

(coherent difference is much lower than actual scattering), there is not an exact coher-

ent match along the elevation angle which intersects the peak response (θt = 130◦).

This behavior is observed in the coherent difference between the model and MoM as

well as SBR and MoM predictions, and is between −1 and 0.5 dBsm. By examining

the co-pol phase plots in Figures 4.2k and 4.5k, one observes a slight mismatch in

phase between the PO-based and more exact MoM predictions. The primary cause

of this coherent difference at the forward scatter response is the GO ray calculation

which assumes the double bounce interaction between the two plates is in the far

field, i.e. that the double bounce electromagnetic wave is planar as it impinges on the

second plate. As discussed in [8], this can be resolved by calculating the near-field

reflection from the PO approximation on the first plate; however, this provides mini-

mal increase in accuracy for a right angle dihedral with a very significant increase to

computational complexity. In conclusion, the model prediction shows perfect agree-

ment in magnitude and phase with SBR and excellent agreement in magnitude but

not phase when compared to MoM for co-pol.
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As expected, the model and SBR cross-pol response for this dihedral orientation

is very low, HV: −∞ dBsm, while VH ranges from −20 to − 10 dBsm because of the

off-waterline transmit elevation. Note the GO-PO prediction for VH-pol reduces to

−∞ dBsm when θt and θr are waterline (90◦); see Appendix B, Equation (B.1). Due

to HV-pol predictions of −∞ dBsm, the magnitude ratio between prediction codes

and the model computes to be ±∞ dB. The VH-pol data shows fairly significant

magnitude ratio (2 dB) when comparing model and SBR to MoM predictions. This is

because although the MoM prediction is low (< −10 dBsm), the dominant scattering

mechanisms are second order effects (near-field interaction for the double-bounce and

diffraction from the dihedral edges) which are not accounted for in the PO-based

model and SBR predictions.

The VH magnitude and phase plots in Figures 4.4j and k show a difference between

the model and SBR. This is due to differences in how the surface current integral is

calculated. While SBR numerically calculates the integral, the closed-form solution

developed in [12] uses L’Hopital’s rule to account for singularities in the integral, see

Equations (3.22-3.25). For polarizations with low scattering levels (< 0 dBsm) and

at angles which approach scattering nulls, these differences produce small differences

in magnitude and phase between model and SBR data.

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB random access memory (RAM) for the 400(θr) ×

400(φr) dataset in this example is approximately 13.5 hours for MoM, 6 minutes for

SBR, and 2.6 seconds for the model used in this thesis. Calculation time does not

take into account time used for target mesh creation or modification required for the

SBR and MoM methods. The model developed in this thesis does not require these

additional files. Thus, the increase to computational efficiency is greater than the

ratio of run times.
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VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.2. Comparison of VV-pol scattering for the dihedral at original orientation and
position shown in Figure 4.1 with incident aspect (θt, φt) = (50◦, 60◦). Figures a-c show
the magnitude response for the model developed in this thesis, SBR, and MoM data
respectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 130◦.
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HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.3. Comparison of HV-pol scattering for the dihedral at original orientation and
position shown in Figure 4.1 with incident aspect (θt, φt) = (50◦, 60◦). Figures a-c show
the magnitude response for the model developed in this thesis, SBR, and MoM data
respectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 130◦.
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VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.4. Comparison of VH-pol scattering for the dihedral at original orientation and
position shown in Figure 4.1 with incident aspect (θt, φt) = (50◦, 60◦). Figures a-c show
the magnitude response for the model developed in this thesis, SBR, and MoM data
respectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 130◦.
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HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.5. Comparison of HH-pol scattering for the dihedral at original orientation and
position shown in Figure 4.1 with incident aspect (θt, φt) = (50◦, 60◦). Figures a-c show
the magnitude response for the model developed in this thesis, SBR, and MoM data
respectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 130◦.
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4.4 Arbitrary Orientation and Position Model Validation

This section will provide two types of data comparisons. First, a case is examined

where the model developed in this thesis is used to predict the scattering from a

dihedral with changes to all six orientation and position parameters - roll, pitch, yaw,

Tx, Ty, and Tz. As in Section 4.3, comparisons will be performed against SBR and

MoM predictions. Second, the model developed in this thesis is compared to the 3D

parametric model developed in [13] and measurements in the AFIT RCS range.

4.4.1 Dihedral with Roll, Pitch, Yaw Rotation and Translation from

Origin.

The scene visualization for this case is provided in Figure 4.6. The polarimetric

scattering for a dihedral at roll 60◦, pitch 45◦, yaw 10◦ and translated X=0.2m,

Y=-0.3m, Z=0.4m from the origin with transmitter position (θt, φt) = (90◦,−10◦) is

shown in Figures 4.8-4.11. The quantitative scattering summary at the peak forward

scatter angle is given in Table 4.2. This case is examined to showcase the ability for

the model in this thesis to account for any combination of arbitrary orientation and

position for the dihedral. A similar case for the flat plate at arbitrary orientation and

position is given in Appendix Section 1.1.2.

Positioning the dihedral at this orientation produces significant scattering magni-

tude at the forward mainlobe for all polarizations (co-pols: ≈ 17 dBsm, cross-pols:

≈ 14 dBsm). An explanation of this depolarizing behavior and how it relates to

dihedral orientation is provided in Section 4.5. Because all four polarizations are

dominated by the mainlobe double-bounce response (not diffraction and near-field

double-bounce effects), the model shows excellent agreement with SBR and MoM

predictions for this dihedral orientation. As shown in Table 4.2, the coherent differ-

ence between model and SBR is < −38 dBsm for all polarizations, and the magnitude
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(a) (b)

Figure 4.6. Geometry and TX/RX angles for scene with rotated and translated dihe-
dral, (a) global coordinate system, (b) target coordinate system. Dihedral is at roll 60◦,
pitch 45◦, yaw 10◦ and translated X=0.2m, Y=-0.3m, Z=0.4m from the origin. Trans-
mit location is (θt, φt) = (90◦,−10◦) and (θ′t, φ

′
t) = (51.07◦, 31.33◦) in the target coordinate

system. Dihedral height is 0.5m, the sides are 0.25m. Prime notation used to indicate
target coordinate system.

ratio is also very low (< 0.02 dB). This indicates the model in this thesis is capable

of accurately accounting for the effects of orientation and position change.

Comparing the model and MoM predictions at the forward scatter angle, one

observes very small magnitude ratio (< 0.7 dB) for all polarizations except HH-pol

which is slightly higher at 1.33 dB. The coherent difference at the forward scatter

angle is 1.2 dBsm for VV-pol, -2.3 dBsm for HV-pol, 0.2 dBsm for VH-pol, and

4.5 dBsm for HH-pol; these values are approximately 16 dB less than the predicted

scattering magnitude for each polarization. As in the the case of the dihedral at

original orientation and position, there is a range of relatively high coherent difference

between the PO-based and more exact MoM predictions, due to the planar wave

assumption used to calculate the double bounce and lack of diffraction terms for

the model in this thesis. However, the overall low level of coherent difference is

not increased due to the changes to dihedral orientation and position. Example

coherent difference figures which show the effects of incorrect phase terms to account
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Table 4.2. Scattering amplitudes and differences at specular angle for dihedral with
roll, pitch, yaw rotation and translation from origin

Peak Magnitude (dBsm) VV HV VH HH
|Model| 17.41 14.4 13.93 17.71
|SBR| 17.41 14.38 13.93 17.71
|MoM| 17.81 15.1 14.4 19.05

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -51.85 -38.12 -54.52 -41.74
|Model-MoM| 1.173 -2.33 0.20 4.48
|SBR-MoM| 1.17 -2.25 0.20 4.45

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.00 0.02 0.00 -0.01
|Model|/|MoM| -0.40 -0.70 -0.47 -1.34
|SBR|/|MoM| -0.40 -0.71 -0.47 -1.33

for position offset are given in Figure 4.7. Clearly the coherent difference plots in

Figures 4.8-4.11 do not show the effects of incorrect phase translation terms.

Figure 4.7. Example coherent difference plots where incorrect phase correction is
applied to account for target position. Each figure is the VV-polarization coherent
difference between a model which uses incorrect phase terms and the SBR prediction
for the case examined in this section. Similar behavior is not observed in the coherent
difference plots in Figures 4.8-4.11, indicating that the model in this thesis accurately
accounts for the effects of arbitrary target position.

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB RAM for the 400(θr) × 400(φr) dataset in this

example is approximately 13.74 hours for MoM, 7 minutes for SBR, and 2.7 seconds

for the model developed in this thesis. Calculation time does not take into account
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time used for target mesh creation or modification required for the SBR and MoM

methods. The model developed in this thesis does not require these additional files.

Thus, the increase to computational efficiency is greater than the ratio of run times.
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VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.8. Comparison of VV-pol scattering for the rotated and translated dihedral
shown in Figure 4.6 with incident aspect (θt, φt) = (90◦,−10◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 116◦.
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HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.9. Comparison of HV-pol scattering for the rotated and translated dihedral
shown in Figure 4.6 with incident aspect (θt, φt) = (90◦,−10◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 116◦.
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VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.10. Comparison of VH-pol scattering for the rotated and translated dihedral
shown in Figure 4.6 with incident aspect (θt, φt) = (90◦,−10◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 116◦.
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HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.11. Comparison of HH-pol scattering for the rotated and translated dihedral
shown in Figure 4.6 with incident aspect (θt, φt) = (90◦,−10◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 116◦.
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4.4.2 Comparison to Measured RCS Data.

In this section, the model in this thesis is compared to RCS data collected in

the AFIT RCS range. Range information and a description of the two measurement

scenarios are given in Section 2.3.5. The test matrix is summarized in Table 4.3.

Also, the parametric model (PM) described in Section 2.2.2 is used as a prediction

method in this section in order to observe any differences in accuracy when compared

to the model in this thesis. Note that this section contains data originally presented

in [23].

Table 4.3. Measurement matrix for AFIT RCS range

Scenario Dihedral Orientation φt φr ∆φr
S1 roll: 90◦, pitch: 45◦ -30◦ [−30◦, 70◦] 0.5◦

S2 roll: 90◦, pitch: 20◦ -10◦ [−10◦, 50◦] 0.5◦

There are a few changes to how data is presented compared to the other sections in

this chapter. Because the bistatic range measurements are collected for an azimuth

sweep at waterline, data is not presented for an θr × φr range. Also, only co-pol

measurement data is available, therefore cross-pols are not analyzed in this section.

The measured data is calibrated for magnitude but not phase, consequently coherent

difference plots are not provided. Calibration information is provided in Section

2.3.5.2. Because the measured data is manually aligned in φr, quantitative data is

calculated as the peak scattering for each waveform, not at the peak scattering for a

specific receiver position. Finally, to present the data more clearly, the measurement

comparisons in this section are calculated as the absolute value of the magnitude ratio

between the measured data and prediction waveforms,
∣∣∣20 log10

|prediction|
|measured|

∣∣∣. Values

nearest to 0 dB indicate excellent agreement in magnitude.
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4.4.2.1 Measurement Scenario 1.

The orientation for this scene is shown in Figure 4.12. The RCS and magnitude

ratio plots for scenario 1 are given in Figure 4.13, while the quantitative waveform

summary is provided in Table 4.4.

(a) (b)

Figure 4.12. Geometry and TX/RX angles for measurement scenario 1, (a) global
coordinate system, (b) target coordinate system. Dihedral is at roll 90◦, pitch 45◦.
Transmit location is (θt, φt) = (90◦,−30◦) and (θ′t, φ

′
t) = (60◦, 45◦) in the target coordinate

system. Dihedral height is 6”, the sides are 3”. Prime notation used to indicate target
coordinate system.

Table 4.4. Quantitative summary for measurement scenario 1

Prediction Peak Magnitude Ratio 3dB Width Computation
Method (dBsm) at Peak (dB) (degrees) Time

vv-pol, hh-pol vv-pol, hh-pol vv-pol, hh-pol

Measure 0.78, 1.87 -, - 12.6◦,11.25◦ Order(hours)
Model 2.90, 2.17 -2.12, -0.30 13.7◦,14.2◦ Order(10−2 sec.)

PM 4.52, 4.52 -3.74, -2.65 10.9◦,10.9◦ Order(10−2 sec.)
MoM 1.90, 0.65 -1.12, 1.22 13.6◦,14.6◦ Order(minutes)
SBR 2.93, 2.21 -2.15, -0.34 13.6◦,14.2◦ Order(seconds)

Visual inspection of Figure 4.13 confirms that the model, SBR, and MoM wave-

forms closely follow the measured data amplitude and mainlobe width near the peak
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forward scatter response. The PM prediction over-estimates the peak magnitude and

has a narrower 3dB width compared to the measured data and other prediction meth-

ods. As expected, the simple PM prediction begins to diverge from the measured data

outside of the first null and is significantly different for φr < 20◦ and φr > 40◦. The

not-insignificant (1.2 dB) magnitude ratio between the peak MoM and measured data

is likely due to differences between measurement data collection and simulation data

collection. For example, the styrofoam block used to tilt the dihedral forward in the

RCS range is most likely not exactly 45◦. Also, the surface of the dihedral is likely

marred by physical inconsistencies which are the probable cause of the repeatable

disjointed behavior on the left side of the measured data mainlobe.

There is a small measurement inaccuracy in the mainlobe located near 32◦ in

VV-polarization and 35◦ in HH-polarization. This is most apparent in the magnitude

difference plots in Figure 4.13, which show an additional 1.2 dB magnitude difference

at these angles. Global range plots of the original, unshifted measurement data are

provided in Figure 4.14. These plots show that this measurement inaccuracy exists

over every frequency (i.e. along the entire range) for this specific receiver angle.

Most likely, this indicates that the mobile bistatic receiver arm was not completely

settled for this specific angle. However, this measurement collection dataset is the

best overall quality of the many data collection attempts for this orientation. Other

attempts suffered from significant range clutter and other measurement issues. The

global range plots show that range clutter is not a significant factor for this specific

measurement inaccuracy.

The computation times for this case are not as varied between the prediction

methods as for the other cases examined in this chapter. There are two reasons for

this. First, the size of the dihedral is smaller, leading to a smaller amount of unknown

elements in the MoM calculation. Also, this case involves a significantly lower amount
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(a) (b)

(c) (d)

Figure 4.13. Comparison of measured vs. predicted scattering for measurement sce-
nario 1 (a,b = 3”, L = 6”, f=10Ghz, roll 90◦, pitch 45◦, (θt, φt) = 90◦,−30◦, and azimuth
receiver sweep at θr = 90◦). (a) VV, (b) HH, (c) magnitude ratio for VV, (d) magnitude
ratio for HH. ‘MoM’ indicates method of moments prediction, ‘SBR’ indicates shoot-
ing and bouncing ray prediction, ‘PM’ indicates parametric model developed in [13]
for ATR, ‘Meas.’ indicates measured data collected in AFIT RCS range, and ‘Model’
indicates the method developed in this thesis.

of receiver data points (201) than the 3D cases in this chapter (401× 401 = 160801).

However, as shown in Table 4.4, there is still an appreciable computational savings

for using both the model in this thesis or PM compared to MoM predictions. This

measurement comparison shows that the model in this thesis is as computationally

fast as the PM model, is as accurate as the SBR prediction, and is more accurate

than the PM model.
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(a) (b)

Figure 4.14. Global range for Scenario 1 measured data, (a) VV, (b) HH. Global range
plots are used for insight into the scattering mechanisms behind the collected RCS
data, and to examine possible range clutter. These global range plots show a slight
inaccuracy at 58◦ for all range positions, indicating that most likely the mobile bistatic
receiver arm was not settled for this measurement. This results in the small measured
data ’blip’ to the right of the peak mainlobe in Figure 4.13.

4.4.2.2 Measurement Scenario 2.

The orientation for this scene is shown in Figure 4.15. The RCS and magnitude

ratio for scenario 2 are shown in Figure 4.16, and the quantitative summary is given

in Table 4.5.

Table 4.5. Quantitative summary for measurement scenario 2

Prediction Peak Magnitude Ratio 3dB Width Computation
Method (dBsm) at Peak (dB) (degrees) Time

vv-pol, hh-pol vv-pol, hh-pol vv-pol, hh-pol

Measure 0.20, 0.24 -, - 10.5◦,11.4◦ Order(hours)
Model -2.27, 0.22 2.47, 0.02 10.6◦,10.5◦ Order(10−2 sec.)

PM -0.68, -0.68 0.87, 0.92 10.1◦,10.1◦ Order(10−2 sec.)
MoM -3.25, 1.55 3.45, -1.31 10.43◦,10.8◦ Order(minutes)
SBR -2.04, 0.39 2.24, -0.15 10.6◦,10.5◦ Order(seconds)

This measurement scenario follows the previous example in that the model, SBR,

and MoM waveforms closely match the measured data amplitude and mainlobe width
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(a) (b)

Figure 4.15. Geometry and TX/RX angles for measurement scenario 2, (a) global
coordinate system, (b) target coordinate system. Dihedral is at roll 90◦, pitch 20◦.
Transmit location is (θt, φt) = (90◦,−10◦) and (θ′t, φ

′
t) = (80◦, 20◦) in the target coordinate

system. Dihedral height is 6”, the sides are 3”. Prime notation used to indicate target
coordinate system.

near the peak forward scatter response. Overall, the magnitude ratio between all four

of the prediction methods and the measured data is smaller for this scenario. Also

of note is that changing the dihedral pitch and TX position causes the peak RCS

magnitude for each of the prediction methods to be lower (VV-pol: ≈ -5 dB, HH-

pol: ≈ -3 dB) for scenario 2 than scenario 1. However, the measured data does not

follow this behavior (VV-pol: +0.1 dB, HH-pol: -1.7 dB). Again, this is most likely

due to inaccuracies in precisely orienting the dihedral in the AFIT RCS range. In

this scenario, the model in this thesis is able to accurately account for scattering at

arbitrary dihedral orientation.

The global range plots in Figure 4.17 show ’jumps’ in the scattering data at 4◦

and 8◦ to 12◦. This is most likely due to undesired interactions between the bistatic

receiver arm and the transmitter at these near-monostatic angles. This results in the

slight measured data inaccuracy on the left side of the mainlobe to the null near −2◦

in Figure 4.16
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(a) VV (b) HH

(c) (d)

Figure 4.16. Comparison of measured vs. predicted scattering for measurement sce-
nario 2 (a,b = 3”, L = 6”, f=10Ghz, roll 90◦, pitch 20◦, (θt, φt) = 90◦,−10◦, and azimuth
receiver sweep at θr = 90◦). (a) VV, (b) HH, (c) magnitude ratio for VV, (d) magnitude
ratio for HH. ‘MoM’ indicates method of moments prediction, ‘SBR’ indicates shoot-
ing and bouncing ray prediction, ‘PM’ indicates parametric model developed in [13]
for ATR, ‘Meas.’ indicates measured data collected in AFIT RCS range, and ‘Model’
indicates the method developed in this thesis.
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(a) (b)

Figure 4.17. Global range for Scenario 2 measured data, (a) VV, (b) HH. Global
range plots are used for insight into the scattering mechanisms behind the collected
RCS data, and to examine possible range clutter. These global range plots show a
slight inaccuracy at 4◦ and 8◦ to 12◦. This is most likely due to undesired interactions
between the bistatic receiver arm and the transmitter at these near-monostatic angles.
This results in the slight measured data inaccuracy on the left side of the mainlobe in
Figure 4.16.
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4.5 Additional Dihedral Validation

This section will examine two interesting dihedral orientation cases. First, the

dihedral at roll angle 45◦ will be examined, followed by a dihedral at roll angle 22.5◦.

An important property of PEC dihedrals is that they act to depolarize the reflected

field from the incident field. This effect is due to the reversal of the tangential surface

component of the electric field at reflection [15] as shown in Figure 4.18. Because the

tangential component of the electric field is essentially zero for a PEC surface, the

sum of the tangential components of the incident and scattered electric fields at the

surface must be zero (n̂× ~E = 0 where ~E = ~Ei + ~Es).

(a) (b)

(c) (d)

Figure 4.18. Polarization effects for PEC plate and dihedral. (a) polarization per-
pendicular to plane of incidence, (b) polarization parallel to plane of incidence, (c)
polarization parallel to dihedral axis, (d) polarization perpendicular to dihedral axis.
For a PEC obstacle, the tangential surface component of the incident electric field vec-
tor is reversed in the reflected electric field vector. When the incident electric field
is perpendicular to the axis of the dihedral (d), the reflected polarization is reversed.
When it is parallel to the dihedral axis (c), the reflected polarization is the same as
the incident polarization.

It is shown in [15] that for the monostatic case the polarization of the reflected
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wave varies with the polarization angle ψ measured with respect to the dihedral

axis. If the incident polarization is rotated away from the dihedral axis by ψ, the

reflected polarization is rotated by this same angle, but in the opposite direction.

The same is true for the bistatic 3D case. The bistatic polarization factor P is found

as follows. For dihedral rotation ζi about the transmitter LOS, the incident and

scattered polarization is expressed as:

êi‖ = ŷ cos ζi + ẑ sin ζi

ês‖ = −ŷ cos ζi + ẑ sin ζi

êi⊥ = −ŷ sin ζi + ẑ cos ζi

ês⊥ = ŷ sin ζi + ẑ cos ζi

(4.1)

where superscripts i and s indicate incident and scattered polarizations, subscripts ‖

and ⊥ indicate the parallel and perpindicular components of the incident polarization

as seen from the transmit LOS, ŷ and ẑ are real-world coordinates where x̂ is pointed

in the direction of the transmitter, and ζi indicates polarization rotation about the

transmitter LOS and is defined in [13].

The intensity of the received field is proportional to the dot product êr · ês, where

êr is aligned with the receiver polarization. The unit vector êr in the bistatic case is:

êr‖,co-pol = ŷ cos ζr + ẑ sin ζr

êr‖,cross-pol = −ŷ sin ζr + ẑ cos ζr

êr⊥,co-pol = −ŷ sin ζr + ẑ cos ζr

êr‖,cross-pol = ŷ cos ζr + ẑ sin ζr

(4.2)

where ζr indicates dihedral rotation about the receiver LOS and is defined in [13].

Therefore, the bistatic polarization factor P for the dihedral at arbitrary orienta-
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tion is:

P =

PVV PHV

PVH PHH

 =

 êr‖,co-pol · ês‖ êr‖,cross-pol · ês‖
êr⊥,cross-pol · ês⊥ êr⊥,co-pol · ês⊥


=

− cos (ζi + ζr) sin (ζi + ζr)

sin (ζi + ζr) cos (ζi + ζr)

 (4.3)

where (4.3) reduces to the form given in [15] for the monostatic case.

From (4.3), one can see that the co-polarization RCS peaks when both the incident

and receive polarization is parallel (ζi = ζr = 0◦) or perpendicular (ζi = ζr = 90◦)

to the dihedral seam, and that the cross-polarization RCS peaks at 45◦ from those

orientations (ζi = ζr = ±45◦,±135◦). At these angles, the co-polarization RCS is

minimum. Further, at ζi = ζr = ±22.5◦, the co- and cross-polarization RCS is

equivalent. This property makes dihedrals effective calibration devices for both co-

and cross- polarization measurements. The following two sections will examine the

predicted scattering for these cases.

4.5.1 Dihedral Oriented for High Cross-Pol Intensity.

The visualization of this scene is shown in Figure 4.19. The polarimetric scattering

for a dihedral with sides 0.25m and length 0.5m at roll 45◦ and transmitter position

(θt, φt) = (90◦, 45◦) is shown in Figures 4.20-4.23. The quantitative summary of

scattering at the peak forward scatter angle is given in Table 4.6. For this transmitter

position, ζi in Equation (4.3) is equal to the dihedral roll angle of 45◦, and ζr at the

peak forward scatter angle is also 45◦. Using Equation (4.3), the predicted scattering

behavior for ζi = ζr = 45◦ is minimum magnitude for co-polarizations and maximum

magnitude for cross-polarizations.

This analysis will examine the high magnitude polarizations (cross-pols) first, fol-
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(a) (b)

Figure 4.19. Geometry and TX/RX angles for scene with dihedral oriented for high
cross-pol scattering, (a) global coordinate system, (b) target coordinate system. Dihe-
dral is oriented at roll 45◦ from original position. Transmit location is (θt, φt) = (90◦, 45◦)
and (θ′t, φ

′
t) = (120◦, 35.26◦) in the target coordinate system. Dihedral height is 0.5m, the

sides are 0.25m. Prime notation used to indicate target coordinate system.

Table 4.6. Scattering amplitudes and differences at specular angle for dihedral orien-
tated for high cross-pol intensity

Peak Magnitude (dBsm) VV HV VH HH
|Model| -9.05 21.78 21.61 -5.48
|SBR| -9.59 21.77 21.62 -5.74
|MoM| -2.58 22.36 22.16 -3.13

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -33.05 -37.45 -37.44 -36.07
|Model-MoM| -7.64 4.01 3.49 -5.81
|SBR-MoM| -7.20 4.00 3.51 -5.83

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.53 0.01 -0.01 0.26
|Model|/|MoM| -6.47 -0.59 -0.54 -2.35
|SBR|/|MoM| -7.00 -0.60 -0.54 -2.61

lowed by the low magnitude polarizations (co-pols), and finish by giving computation

time for each simulation. The magnitude ratio at the peak forward scatter angle for

the cross-pol terms shows excellent agreement for all three waveform comparisons

(< 0.6 dB). The coherent difference between model and SBR predictions is extremely
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low (< −37 dbsm), indicating that the model in this thesis is at least as accurate

as SBR predictions for dihedrals oriented at for high cross-pol scattering. As in the

analysis in Sections 4.4 and 4.4.1, there is significant coherent difference (4 dBsm)

between the cross-pol model and MoM predictions. This behavior is in a band per-

pindicular to the dihedral seam, and does not significantly vary in magnitude over

this range. This indicates that the coherent difference is most likely due to second

order effects (diffraction, near-field interaction between two plates), which the GO-

PO dihedral solution does not account for, and not errors in applying the arbitrary

orientation transforms central to this thesis.

Comparisons for the low magnitude co-pols for this case are similar to the low

magnitude cross-pols for a dihedral at the original orientation given in Section 4.3.

While the model and SBR data is perfectly matched in magnitude and phase, the

PO-based model and SBR predictions do not show perfect agreement in magnitude or

phase with the exact MoM prediction. As explained in Section 4.3, this is because the

PO-based predictions do not account for the dominant scattering behavior at these

low magnitudes: near-field interaction between the dihedral plates and diffraction

from the target edges.

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB RAM for the 400(θr) × 400(φr) dataset in this

example is approximately 13.6 hours for MoM, 6 minutes for SBR, and 2.3 seconds

for the model developed in this thesis. Again, these run times do not take into account

time used for target mesh creation or modification for the SBR and MoM methods.
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VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.20. Comparison of VV-pol scattering for the dihedral oriented for high cross-
pol RCS shown in Figure 4.19 with roll 45◦ and incident aspect (θt, φt) = (90◦, 45◦).
Figures a-c show the magnitude response for the model developed in this thesis, SBR,
and MoM data respectively. Figures d-f show the coherent difference, and g-i show the
magnitude ratio between these waveforms. Figures j and k show magnitude and phase
for an azimuth sweep for constant elevation through the peak response, in this case
θr = 45◦. 76



HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.21. Comparison of HV-pol scattering for the dihedral oriented for high cross-
pol RCS shown in Figure 4.19 with roll 45◦ and incident aspect (θt, φt) = (90◦, 45◦).
Figures a-c show the magnitude response for the model developed in this thesis, SBR,
and MoM data respectively. Figures d-f show the coherent difference, and g-i show the
magnitude ratio between these waveforms. Figures j and k show magnitude and phase
for an azimuth sweep for constant elevation through the peak response, in this case
θr = 45◦. 77



VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.22. Comparison of VH-pol scattering for the dihedral oriented for high cross-
pol RCS shown in Figure 4.19 with roll 45◦ and incident aspect (θt, φt) = (90◦, 45◦).
Figures a-c show the magnitude response for the model developed in this thesis, SBR,
and MoM data respectively. Figures d-f show the coherent difference, and g-i show the
magnitude ratio between these waveforms. Figures j and k show magnitude and phase
for an azimuth sweep for constant elevation through the peak response, in this case
θr = 45◦. 78



HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.23. Comparison of HH-pol scattering for the dihedral oriented for high cross-
pol RCS shown in Figure 4.19 with roll 45◦ and incident aspect (θt, φt) = (90◦, 45◦).
Figures a-c show the magnitude response for the model developed in this thesis, SBR,
and MoM data respectively. Figures d-f show the coherent difference, and g-i show the
magnitude ratio between these waveforms. Figures j and k show magnitude and phase
for an azimuth sweep for constant elevation through the peak response, in this case
θr = 45◦. 79



4.5.2 Dihedral Oriented for Similar Co/Cross-Pol Intensity.

The orientation of this scene is shown in Figure 4.24. The polarimetric scattering

for a dihedral with sides 0.25m and length 0.5m at roll 22.5◦ and transmitter position

(θt, φt) = (90◦, 45◦) is shown in Figures 4.25-4.28, and a quantitative summary of

scattering at the peak forward scatter angle is given in Table 4.7. Using Equation

(4.3) and ζi = ζr = 22.5◦, the predicted scattering behavior for this target orientation

is similar intensity for co- and cross- polarizations.

(a) (b)

Figure 4.24. Geometry and TX/RX angles for scene with dihedral oriented for similar
co/cross-pol scattering, (a) global coordinate system, (b) target coordinate system.
Dihedral is oriented at roll 22.5◦ from original position. Transmit location is (θt, φt) =
(90◦, 45◦) and (θ′t, φ

′
t) = (105.7◦, 42.73◦) in the target coordinate system. Dihedral height is

0.5m, the sides are 0.25m. Prime notation used to indicate target coordinate system.

This combination of dihedral orientation and transmitter position produces sig-

nificant intensity across all four polarizations. For this reason, the three prediction

methods show excellent agreement in magnitude (< 0.38 dB magnitude ratio) at the

forward scatter angle. Like the other cases examined in this chapter, the coherent

difference between model and SBR predictions is extremely low (< −33 dBsm). Also

like the previously examined cases, there is a coherent difference mismatch (≈ 7 dBsm,

about 15 dB lower than predicted intensity at the forward scatter angle) betweeen

80



Table 4.7. Scattering amplitudes and differences at specular angle for dihedral orien-
tated for similar co/cross-pol intensity

Peak Magnitude (dBsm) VV HV VH HH
|Model| 23.22 20.08 20.05 22.96
|SBR| 23.21 20.07 20.05 22.97
|MoM| 23.59 20.38 20.30 23.16

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -33.18 -49.02 -51.01 -37.71
|Model-MoM| 6.86 4.29 3.93 7.75
|SBR-MoM| 6.84 4.29 3.94 7.77

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.01 0.00 0.00 -0.01
|Model|/|MoM| -0.37 -0.30 -0.26 -0.20
|SBR|/|MoM| -0.38 -0.30 -0.26 -0.19

the PO-based and more exact MoM predictions. As in the 45◦ roll case, this complex

difference band is positioned along an axis perpindicular to the dihedral axis and is

produced by a small phase mismatch due to differences in how the double bounce

scattering mechanism is calculated.

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB RAM for the 400(θr) × 400(φr) dataset in this

example is approximately 13.5 hours for MoM, 6 minutes for SBR, and 2.3 seconds

for the model developed in this thesis. Again, calculations are performed on quad-

core workstations with 32GB RAM and do not take into account time used for target

mesh creation or modification for the SBR and MoM methods.
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VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.25. Comparison of VV-pol scattering for the dihedral oriented for similar
co/cross-pol RCS shown in Figure 4.24 with roll 22.5◦ and incident aspect (θt, φt) =
(90◦, 45◦). Figures a-c show the magnitude response for the model developed in this
thesis, SBR, and MoM data respectively. Figures d-f show the coherent difference,
and g-i show the magnitude ratio between these waveforms. Figures j and k show
magnitude and phase for an azimuth sweep for constant elevation through the peak
response, in this case θr = 60◦. 82



HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.26. Comparison of HV-pol scattering for the dihedral oriented for similar
co/cross-pol RCS shown in Figure 4.24 with roll 22.5◦ and incident aspect (θt, φt) =
(90◦, 45◦). Figures a-c show the magnitude response for the model developed in this
thesis, SBR, and MoM data respectively. Figures d-f show the coherent difference,
and g-i show the magnitude ratio between these waveforms. Figures j and k show
magnitude and phase for an azimuth sweep for constant elevation through the peak
response, in this case θr = 60◦. 83



VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.27. Comparison of VH-pol scattering for the dihedral oriented for similar
co/cross-pol RCS shown in Figure 4.24 with roll 22.5◦ and incident aspect (θt, φt) =
(90◦, 45◦). Figures a-c show the magnitude response for the model developed in this
thesis, SBR, and MoM data respectively. Figures d-f show the coherent difference,
and g-i show the magnitude ratio between these waveforms. Figures j and k show
magnitude and phase for an azimuth sweep for constant elevation through the peak
response, in this case θr = 60◦. 84



HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure 4.28. Comparison of HH-pol scattering for the dihedral oriented for similar
co/cross-pol RCS shown in Figure 4.24 with roll 22.5◦ and incident aspect (θt, φt) =
(90◦, 45◦). Figures a-c show the magnitude response for the model developed in this
thesis, SBR, and MoM data respectively. Figures d-f show the coherent difference,
and g-i show the magnitude ratio between these waveforms. Figures j and k show
magnitude and phase for an azimuth sweep for constant elevation through the peak
response, in this case θr = 60◦. 85



4.6 Summary

This chapter began by examining the GO-PO solution, SBR, and MoM scattering

predictions for a dihedral orientated with its seam centered along the z axis. The

next case examined was a dihedral at roll=60◦, pitch=45◦, yaw=10◦ and translated

X=0.2m, Y=-0.3m, Z=0.4m from the origin in order to verify that the model in this

thesis successfully accounted for changes to orientation and position. Following this,

two cases were provided which compared measured data collected in the AFIT RCS

range with four prediction methods: SBR, MoM, PM, and the model in this thesis.

Finally, two cases were examined that showcase dihedral orientations commonly used

for calibration purposes.

The six cases provided in this chapter show that the model developed in this the-

sis is capable of accurately modeling a dihedral at any orientation and position. The

model shows excellent agreement with SBR predictions in magnitude and phase for

each case examined. It also is closely matched with MoM predictions in magnitude.

For some combinations of dihedral orientation and TX position, there are small phase

inaccuracies between the model and MoM predictions. However, the coherent differ-

ence between SBR and MoM is identical to the coherent difference between model

and MoM for these cases. This indicates that phase inaccuracies are due to inherent

differences between GO-PO assumptions and an exact solution, and not a result of

the transforms required for arbitrary orientation and position.

In addition to accurately modeling the scattering behavior, the model in this the-

sis is computationally efficient. Typical run times for these six cases were 13 hours for

MoM, 6 minutes for SBR, and 2 seconds for the model (see Table 4.8). Additionally,

the model in this thesis is easily added to other applications as a MATLABTM func-

tion.

86



Table 4.8. Computation time for cases examined

Case MoM (hours) SBR (minutes) Model (seconds)

Dihedral at original
orientation (Section 4.3)

13.5 6 2.6

Dihedral with rotation
and translation (Section

4.4.1)
13.7 7 2.7

Dihedral orientated for
high cross-pol intensity

(Section 4.5.1)
13.6 6 2.3

Dihedral orientated for
similar co/cross-pol

intensity (Section 4.5.2)
13.5 6 2.3
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V. Conclusion and Future Work

5.1 Conclusion

The model developed in this thesis accurately accounts for the effects of arbitrary

orientation and position. It is applied to the bistatic 3D polarimetric scattering solu-

tions for a dihedral and plate target. This model produces scattering data that shows

excellent agreement in magnitude and phase with SBR predictions. Comparisons to

MoM predictions show excellent agreement in magnitude. For some combinations

of target orientation and TX position, there are small phase differences between the

model and MoM predictions. It is shown that these phase inaccuracies are due to

inherent differences between the underlying scattering solutions (PO approximation,

GO assumption for dihedral double-bounce mechanism) and the more exact MoM

solution and not due to the methods used to account for arbitrary orientation and

position. Furthermore, the model in this thesis requires a fraction of the computation

time required for SBR and MoM predictions. Due to the model’s excellent accu-

racy and timeliness, it shows great promise for application to bistatic SAR ATR and

airborne bistatic SAR calibration.

5.2 Future Work

There are many different avenues for future work related to the model developed

in this thesis. In terms of increasing the accuracy of the underlying scattering so-

lutions, diffraction terms and non-PEC materials should be investigated. Validating

the diffraction terms would require a SBR simulation which takes into account edge

scattering. Validating the non-PEC material solution would require a new set of SBR

and MoM simulations using appropriate boundary conditions. If even more accuracy

is desired, the method developed in [9] for monostatic dihedral scattering should be in-
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vestigated for extension to the bistatic case. That method uses numerical integration

to find the PO near-field integral for the double-bounce reflection. These solutions

would show reduced coherent difference when compared to MoM predictions at the

cost of computation time.

There are also research possibilities related to future bistatic ATR applications.

First, the efficiency and accuracy of feature estimation using the methods described

in [11] should be investigated using the model developed in this thesis compared to

the previously developed 3D parametric models. The impacts of increased model

complexity should also be studied for models that account for diffraction terms and

non-PEC materials. Also, other canonical target solutions should be investigated.

The trihedral should be examined using the same GO-PO method that is developed

in [13] for the dihedral. However, a trihedral GO-PO solution will most likely suffer in

accuracy more than the dihedral case due to using a planar wave assumption for two

consecutive double-bounce reflections. Additionally, GO-PO solutions for dihedrals

with non-90◦ interior angles could be developed as separate target types. GO-PO

solutions for obtuse (> 90◦) angles will be more accurate than acute (< 90◦) angles

which have multiple-bounce scattering effects. Future target scattering solutions can

be extended to arbitrary orientation and position using the method described in this

thesis.

The model in this thesis should also be investigated for use in bistatic SAR calibra-

tion. Because the model is capable of quickly predicting accurate scattering behavior

for a dihedral at any orientation and position and for any bistatic TX/RX angles

within the dihedral interior, it could be used to calibrate bistatic SAR data scenes

containing known dihedral targets in near-real time.
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Appendix A. Additional Data Comparisons

This appendix contains two additional data comparisons used in the derivation of

the arbitrary position and orientation PO solution. Simple plate targets were used

when developing the MATLABTM function to account for arbitrary orientation and

position. Advantages to using a simple plate compared to the dihedral include simpler

scattering behavior and more efficient creation of SBR and MoM prediction data for

benchmark comparisons during MATLABTM code development.

1.1 Simple Plate

This section provides comparisons between the model for a simple plate developed

in Chapter III vs. SBR and MoM predictions. First, a plate orientated as shown in

Figure 3.1 is examined to verify the 3D bistatic PO model developed in Section 3.2.2.

Then, to further verify the method to account for arbitrary orientation and position

developed in Section 3.4, an example scene is examined where the plate’s roll, pitch,

yaw, and translation from the origin along all three axes are nonzero.

1.1.1 Plate at Original Orientation and Position.

The visualization for this scene is shown in Figure A.1. The 3D polarimetric

scattering for a plate centered in the XY plane with sides 0.25m and length 0.5m

and transmitter position (θt, φt) = (45◦,−60◦) is shown in Figures A.2-A.5. The

quantitative summary of scattering at the peak forward scatter angle is given in

Table A.1.

Results for the plate centered in the XY plane are similar to results for the dihedral

at original orientation and position examined in Section 4.3. The plate PO model

closely matches SBR data in magnitude and phase, and shows excellent agreement

90



(a) (b)

Figure A.1. Geometry and TX/RX angles for plate centered in XY plane, (a) global co-
ordinate system, (b) target coordinate system. Transmit location is (θt, φt) = (45◦,−60◦)
and (θ′t, φ

′
t) = (45◦,−60◦) in the target coordinate system. Plate dimensions are W =

0.5m, d = 0.25m. Prime notation used to indicate target coordinate system.

Table A.1. Scattering amplitudes and differences at specular angle for plate at original
orientation and position

Peak Magnitude (dBsm) VV HV VH HH
|Model| 20.40 -3.19 -8.44 20.38
|SBR| 20.40 -3.19 -8.43 20.38
|MoM| 20.62 -0.56 -0.14 20.48

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -89.10 -83.59 -91.17 -89.17
|Model-MoM| -5.25 -12.05 -4.32 -8.29
|SBR-MoM| -5.25 -12.06 -4.32 -8.29

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.00 0.00 -0.00 -0.00
|Model|/|MoM| -0.23 -2.63 -8.29 -0.10
|SBR|/|MoM| -0.23 -2.63 -8.29 -0.10

with MoM predictions in magnitude but not phase. This is due to inherent differences

in the PO approximation compared to an exact solution.

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB RAM for the 400(θr) × 400(φr) dataset in this
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example is approximately 6.6 hours for MoM, 3.4 minutes for SBR, and 0.9 seconds

for the model developed in this thesis. Again, calculations are performed on quad-

core workstations with 32GB RAM and do not take into account time used for target

mesh creation or modification required for the SBR and MoM methods.

92



VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.2. Comparison of VV-pol scattering for the plate centered in XY plane shown
in Figure A.1 with incident aspect (θt, φt) = (45◦,−60◦). Figures a-c show the magnitude
response for the model developed in this thesis, SBR, and MoM data respectively.
Figures d-f show the coherent difference, and g-i show the magnitude ratio between
these waveforms. Figures j and k show magnitude and phase for an azimuth sweep for
constant elevation through the peak response, in this case θr = 45◦.
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HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.3. Comparison of HV-pol scattering for the plate centered in XY plane shown
in Figure A.1 with incident aspect (θt, φt) = (45◦,−60◦). Figures a-c show the magnitude
response for the model developed in this thesis, SBR, and MoM data respectively.
Figures d-f show the coherent difference, and g-i show the magnitude ratio between
these waveforms. Figures j and k show magnitude and phase for an azimuth sweep for
constant elevation through the peak response, in this case θr = 45◦.
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VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.4. Comparison of VH-pol scattering for the plate centered in XY plane shown
in Figure A.1 with incident aspect (θt, φt) = (45◦,−60◦). Figures a-c show the magnitude
response for the model developed in this thesis, SBR, and MoM data respectively.
Figures d-f show the coherent difference, and g-i show the magnitude ratio between
these waveforms. Figures j and k show magnitude and phase for an azimuth sweep for
constant elevation through the peak response, in this case θr = 45◦.
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HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.5. Comparison of HH-pol scattering for the plate centered in XY plane shown
in Figure A.1 with incident aspect (θt, φt) = (45◦,−60◦). Figures a-c show the magnitude
response for the model developed in this thesis, SBR, and MoM data respectively.
Figures d-f show the coherent difference, and g-i show the magnitude ratio between
these waveforms. Figures j and k show magnitude and phase for an azimuth sweep for
constant elevation through the peak response, in this case θr = 45◦.
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1.1.2 Plate at Non-Original Orientation and Position.

The visualization for this scene is shown in Figure A.6. The 3D polarimetric

scattering for a plate with roll= −40◦, pitch= 55◦, yaw= 65◦, and translated X =-

0.3m, Y=0.6m, and Z=-0.1m, with transmitter position (θt, φt) = (90◦, 30◦) is shown

in Figures A.7-A.10. The plate dimensions are sides d = 0.25m and length W = 0.5m.

The quantitative summary of scattering at the peak forward scatter angle is given in

Table A.2.

(a) (b)

Figure A.6. Geometry and TX/RX angles for rotated and translated plate, (a) global
coordinate system, (b) target coordinate system. Plate is at roll −40◦, pitch 55◦, yaw
−65◦ and translated X=-0.3m, Y=0.6m, Z=-0.1m from the origin. Transmit location is
(θt, φt) = (90◦, 30◦) and (θ′t, φ

′
t) = (54.15◦, 93.54◦) in the target coordinate system. Plate di-

mensions are W = 0.5m, d = 0.25m. Prime notation used to indicate target coordinate
system.
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Table A.2. Scattering amplitudes and differences at specular angle for plate at non-
original orientation and position

Peak Magnitude (dBsm) VV HV VH HH
|Model| 15.84 15.57 15.68 15.88
|SBR| 15.84 15.57 15.68 15.87
|MoM| 15.36 16.53 15.51 17.14

Coherent Difference (dBsm) VV HV VH HH
|Model-SBR| -53.36 -53.51 -53.39 -53.29
|Model-MoM| -9.03 0.67 -5.44 3.89
|SBR-MoM| -9.08 0.68 -5.45 3.90

Magnitude Ratio (dB) VV HV VH HH
|Model|/|SBR| 0.00 0.00 0.00 0.00
|Model|/|MoM| 0.48 -0.96 0.17 -1.26
|SBR|/|MoM| 0.48 -0.96 0.16 -1.27

Results for this case closely match the rotated and translated dihedral examined in

Section 4.4.1. The model in this thesis accurately accounts for changes to orientation

and position. Note the model also accounts for depolarizing effects (cross-pols have

similar magnitude to co-pols) due to the change in orientation and PEC boundary

conditions (n̂× ~E ′ = 0).

Calculation time on Dell Precision 690TM workstations with one Quad 3.00 GHz

Intel Xeon R© processor and 32GB RAM for the 400(θr) × 400(φr) dataset in this

example is approximately 6.75 hours for MoM, 4.2 minutes for SBR, and 0.9 seconds

for the model developed in this thesis. Again, calculations are performed on quad-

core workstations with 32GB RAM and do not take into account time used for target

mesh creation or modification needed for the SBR and MoM methods.
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VV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.7. Comparison of VV-pol scattering for the rotated and translated plate
shown in Figure A.6 with incident aspect (θt, φt) = (90◦, 30◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 60◦.
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HV-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.8. Comparison of HV-pol scattering for the rotated and translated plate
shown in Figure A.6 with incident aspect (θt, φt) = (90◦, 30◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 60◦.
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VH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.9. Comparison of VH-pol scattering for the rotated and translated plate
shown in Figure A.6 with incident aspect (θt, φt) = (90◦, 30◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 60◦.
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HH-polarization

(a) |Model| (b) |SBR| (c) |MoM|

(d) |Model-SBR| (e) |Model-MoM| (f) |SBR-MoM|

(g) |Model|/|SBR| (h) |Model|/|MoM| (i) |SBR|/|MoM|

(j) Magnitude (k) Phase

Figure A.10. Comparison of HH-pol scattering for the rotated and translated plate
shown in Figure A.6 with incident aspect (θt, φt) = (90◦, 30◦). Figures a-c show the
magnitude response for the model developed in this thesis, SBR, and MoM data re-
spectively. Figures d-f show the coherent difference, and g-i show the magnitude ratio
between these waveforms. Figures j and k show magnitude and phase for an azimuth
sweep for constant elevation through the peak response, in this case θr = 60◦.
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Appendix B. Co/Cross-pol Dihedral Scattering

This appendix contains the co/cross-polarization scattering equations for the bistatic

3D GO-PO dihedral scattering solution developed in [12] and summarized in Section

3.3.2. This information is presented in the appendix due to space constraints in

Chapter III.

2.1 Co/Cross-pol Equations

Using Equation (3.26), the co/cross-pol PO solution for bistatic scattering from a

dihedral at the orientation shown in Figure 3.3 is [12]:

~E ′VV,dih =
jkL

2π
sinc
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2
Z
)

sin θ′r

[
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2
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)
e
ja
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2
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)
e
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]
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~E ′HV,dih = 0 (B.1b)
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~E ′HH,dih =
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where X = k (sin θ′r cosφ′r + sin θ′t cosφ′t), Y = k (sin θ′r sinφ′r + sin θ′t sinφ′t), Z =

k (cos θ′r + cos θ′t), and the integral terms Ixz, Iyz are defined in Equations (3.18)-

(3.21).
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